Design of a miniaturised triple-band metamaterial antenna loaded with complementary split ring resonator and partially defected ground structure for wireless applications

2019 ◽  
Vol 17 (4) ◽  
pp. 378
Author(s):  
Sudha Malik ◽  
Garima Srivastava
2021 ◽  
Vol 36 (6) ◽  
pp. 718-725
Author(s):  
Narayanasamy RajeshKumar ◽  
Palani Sathya ◽  
Sharul Rahim ◽  
Akaa Eteng

An innovative method is proposed to improve the cross-polarization performance and impedance matching of a microstrip antenna by integrating a complimentary split ring resonator and slots as a defected ground structure. An equivalent circuit model (ECM) enables the design take into consideration the mutual coupling between the antenna patch and the Defected Ground Structure. The input impedance and surface current density analysis confirms that the integration of a CSRR within a rectangular microstrip patch antenna leads to uniform comparative cross-polarization level below 40 dB in the H-plane, over an angular range of ± 50°. Introducing parallel slots, as well, leads to a reduction of spurious antenna radiation, thereby improving the impedance matching. Measurements conducted on a fabricated prototype are consistent with simulation results. The proposed antenna has a peak gain of 4.16 dB at 2.6 GHz resonating frequency, and hence is good candidate for broadband service applications.


2013 ◽  
Vol 55 (4) ◽  
pp. 814-816 ◽  
Author(s):  
D. Laila ◽  
R. Sujith ◽  
V.A. Shameena ◽  
C.M. Nijas ◽  
V.P. Sarin ◽  
...  

2016 ◽  
Vol 54 (6) ◽  
pp. 689 ◽  
Author(s):  
Phan Duy Tung ◽  
Phan Huu Lam ◽  
Nguyen Thi Quynh Hoa

A microstrip antenna using negative index metamaterial based on complementary split ring resonator (CSRR)-loaded ground has been investigated in order to miniaturize the size and improve the antenna characteristics. The proposed antennas are designed on FR4 material and simulated results are provided by HFSS software. The metamaterial antenna was reduced 75 % the overall size compared to the normal microstrip antenna. Furthermore, compared with the normal microstrip antenna, the antenna characteristics of the metamaterial antenna were improved significantly.  The proposed metamaterial antenna exhibited the antenna resonate at 2.45 GHz, the gain of higher than 6.5 dB and the bandwidth of 110 MHz through the whole WLAN band.  The obtained results indicated that the proposed antenna is a good candidate for WLAN applications.


Sign in / Sign up

Export Citation Format

Share Document