microstrip antenna
Recently Published Documents


TOTAL DOCUMENTS

5691
(FIVE YEARS 1114)

H-INDEX

73
(FIVE YEARS 8)

Author(s):  
Medhal Bharathraj Kumar ◽  
Praveen Jayappa

Microstrip antenna is broadly used in the modern communication system due to its significant features such as light weight, inexpensive, low profile, and ease of integration with radio frequency devices. The fractal shape is applied in antenna geometry to obtain the ultra-wideband antennas. In this paper, the sierpinski carpet fractal monopole antenna (SCFMA) is developed for base case, first iteration and second iteration to obtain the wideband based on its space filling and self-similar characteristics. The dimension of the monopole patch size is optimized to minimize the overall dimension of the fractal antenna. Moreover, the optimized planar structure is proposed using the microstrip line feed. The monopole antenna is mounted on the FR4 substrate with the thickness of 1.6 mm with loss tangent of 0.02 and relative permittivity of 4.4. The performance of this SCFMA is analyzed in terms of area, bandwidth, return loss, voltage standing wave ratio, radiation pattern and gain. The proposed fractal antenna achieves three different bandwidth ranges such as 2.6-4.0 GHz, 2.5-4.3 GHz and 2.4-4.4 GHz for base case, first and second iteration respectively. The proposed SCFMA is compared with existing fractal antennas to prove the efficiency of the SCFMA design. The area of the SCFMA is 25×20 mm<sup>2</sup>, which is less when compared to the existing fractal antennas.


Author(s):  
Suchana Mishra ◽  
Rabindra Kishore Mishra ◽  
Srikanta Patnaik

This paper deals with a rectangular microstrip antenna on a trapezoidal substrate. It finds radiation pattern of the antenna using the concept of fractional cross product. Results show that as the fraction goes from 1 to 0.1, the direction of null in the H-plane moves from end fire towards broad side. Also, a back-lobe starts to appear in the H-plane.


Author(s):  
Hend A. Malhat ◽  
Sarah Elgiddawy ◽  
Saber Zainud-Deen ◽  
Hesham F. A. Hamed ◽  
Ahmed A. Ibrahim

2022 ◽  
Author(s):  
Haider Ali ◽  
Muhammad Afzal ◽  
Dushmantha Thalakotuna ◽  
Karu Esselle ◽  
Subhas Mukhopadhyay

In this paper we present a shared-aperture polarisation reconfigurable microstrip array designed to resonate at 11.5 GHz with a gain bandwidth of 2 GHz (~17%). The polarisation reconfigurability (both linear and circular) is achieved using two orthogonal and independently-fed sub-arrays that are intertwined together on the same aperture. Each subarray is fed through one port and a feed network that distributes the power among the array elements incorporating Taylor taper distribution to minimize the sidelobe level. The array has low cross-polarisation level (<-20 dB) and good port isolation (<-24 dB). The shared aperture and absence of active switching devices provide better control of polarisation selection with almost no insertion loss. A near-field metasurface based steering system is also presented and applied to the array for one- and two-dimensional beam steering. The results are verified through model simulations and measurement of the fabricated prototypes.


2022 ◽  
Author(s):  
Haider Ali ◽  
Muhammad Afzal ◽  
Dushmantha Thalakotuna ◽  
Karu Esselle ◽  
Subhas Mukhopadhyay

In this paper we present a shared-aperture polarisation reconfigurable microstrip array designed to resonate at 11.5 GHz with a gain bandwidth of 2 GHz (~17%). The polarisation reconfigurability (both linear and circular) is achieved using two orthogonal and independently-fed sub-arrays that are intertwined together on the same aperture. Each subarray is fed through one port and a feed network that distributes the power among the array elements incorporating Taylor taper distribution to minimize the sidelobe level. The array has low cross-polarisation level (<-20 dB) and good port isolation (<-24 dB). The shared aperture and absence of active switching devices provide better control of polarisation selection with almost no insertion loss. A near-field metasurface based steering system is also presented and applied to the array for one- and two-dimensional beam steering. The results are verified through model simulations and measurement of the fabricated prototypes.


Author(s):  
Surya Deo Choudhary ◽  
Shilpee Patil ◽  
Alka Verma ◽  
Md Irshad Alam ◽  
Vinod M. Kapse ◽  
...  

Abstract A triple-frequency operated concentric annular ring microstrip antenna which is single fed is presented. The proposed antenna with three concentric annular rings and two symmetrical notches on its outer ring and having a cross slot in its ground surface shows triple band at resonance frequency 1.22760, 1.57542, and 2.18 GHz, respectively. At the first two bands (GPS L2 and GPS L1), circular polarization characteristic is observed and the third band observes linear polarization finding its application in Universal Mobile Telecommunication System (UMTS). The complete dimension of the antenna designed and fabricated is only 51.6 × 51.6 × 1.6 mm3. Experimental results depict the proposed antenna gain of 3.31, 3.55, and 3.50 dBi in three bands, respectively, and closely matches with the theoretical results.


2022 ◽  
Author(s):  
Bassam R. Mohammed ◽  
Doaa M. Abbas ◽  
Haidar Zaeer Dhaam

Sign in / Sign up

Export Citation Format

Share Document