A standardized commissioning framework of Monte Carlo dose calculation algorithms for proton pencil beam scanning treatment planning systems

2020 ◽  
Vol 47 (4) ◽  
pp. 1545-1557 ◽  
Author(s):  
Chih‐Wei Chang ◽  
Sheng Huang ◽  
Joseph Harms ◽  
Jun Zhou ◽  
Rongxiao Zhang ◽  
...  
2021 ◽  
Vol 27 (3) ◽  
pp. 181-190
Author(s):  
Mojtaba Abazarfard ◽  
Payam Azadeh ◽  
Ahmad Mostaar

Abstract Purpose: Advanced radiation therapy techniques use small fields in treatment planning and delivery. Small fields have the advantage of more accurate dose delivery, but with the cost of some complications in dosimetry. Different dose calculation algorithms imported in various treatment planning systems (TPSs) which each of them has different accuracy. Monte Carlo (MC) simulation has been reported as one of the accurate methods for calculating dose distribution in radiation therapy. The aim of this study was the evaluation of TPS dose calculation algorithms in small fields against 2 MC codes. Methods: A linac head was simulated in 2 MC codes, MCNPX, and GATE. Then three small fields (0.5×0.5, 1×1 and 1.5×1.5 cm2) were simulated with 2 MC codes, and also these fields were planned with different dose calculation algorithms in Isogray and Monaco TPS. PDDs and lateral dose profiles were extracted and compared between MC simulations and dose calculation algorithms. Results: For 0.5×0.5 cm2 field mean differences in PDDs with MCNPX were 2.28, 4.6, 5.3, and 7.4% and with GATE were -0.29, 2.3, 3 and 5% for CCC, superposition, FFT and Clarkson algorithms respectively. For 1×1 cm2 field mean differences in PDDs with MCNPX were 1.58, 0.6, 1.1 and 1.4% and with GATE were 0.77, 0.1, 0.6 and 0.9% for CCC, superposition, FFT and Clarkson algorithms respectively. For 1.5×1.5 cm2 field mean differences in PDDs with MCNPX were 0.82, 0.4, 0.6 and -0.4% and with GATE were 2.38, 2.5, 2.7 and 1.7% for CCC, superposition, FFT and Clarkson algorithms respectively. Conclusions: Different dose calculation algorithms were evaluated and compared with MC simulation in small fields. Mean differences with MC simulation decreased with the increase of field sizes for all algorithms.


2014 ◽  
Vol 30 ◽  
pp. e102
Author(s):  
N. Yakoumakis ◽  
A. Episkopakis ◽  
E. Koutsouveli ◽  
G. Kollias ◽  
C. Paraskevopoulou ◽  
...  

2009 ◽  
Vol 36 (6Part18) ◽  
pp. 2663-2663
Author(s):  
Z Chi ◽  
Y Cao ◽  
Y Zhang ◽  
D Liu ◽  
R Li ◽  
...  

2014 ◽  
Vol 13 (4) ◽  
pp. 447-455 ◽  
Author(s):  
K. Tanha ◽  
S. R. Mahdavi ◽  
G. Geraily

AbstractAimsTo verify the accuracy of two common absorbed dose calculation algorithms in comparison to Monte Carlo (MC) simulation for the planning of the pituitary adenoma radiation treatment.Materials and methodsAfter validation of Linac's head modelling by MC in water phantom, it was verified in Rando phantom as a heterogeneous medium for pituitary gland irradiation. Then, equivalent tissue-air ratio (ETAR) and collapsed cone convolution (CCC) algorithms were compared for a conventional three small non-coplanar field technique. This technique uses 30 degree physical wedge and 18 MV photon beams.ResultsDose distribution findings showed significant difference between ETAR and CCC of delivered dose in pituitary irradiation. The differences between MC and dose calculation algorithms were 6.40 ± 3.44% for CCC and 10.36 ± 4.37% for ETAR. None of the algorithms could predict actual dose in air cavity areas in comparison to the MC method.ConclusionsDifference between calculation and true dose value affects radiation treatment outcome and normal tissue complication probability. It is of prime concern to select appropriate treatment planning system according to our clinical situation. It is further emphasised that MC can be the method of choice for clinical dose calculation algorithms verification.


Sign in / Sign up

Export Citation Format

Share Document