treatment planning systems
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 49)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 92 ◽  
pp. 52-61
Author(s):  
Giuseppe Della Gala ◽  
Manuel Bardiès ◽  
Jill Tipping ◽  
Lidia Strigari

2021 ◽  
Vol 11 ◽  
Author(s):  
Shuhua Wei ◽  
Chunxiao Li ◽  
Mengyuan Li ◽  
Yan Xiong ◽  
Yuliang Jiang ◽  
...  

Radioactive iodine-125 (I-125) is the most widely used radioactive sealed source for interstitial permanent brachytherapy (BT). BT has the exceptional ability to deliver extremely high doses that external beam radiotherapy (EBRT) could never achieve within treated lesions, with the added benefit that doses drop off rapidly outside the target lesion by minimizing the exposure of uninvolved surrounding normal tissue. Spurred by multiple biological and technological advances, BT application has experienced substantial alteration over the past few decades. The procedure of I-125 radioactive seed implantation evolved from ultrasound guidance to computed tomography guidance. Compellingly, the creative introduction of 3D-printed individual templates, BT treatment planning systems, and artificial intelligence navigator systems remarkably increased the accuracy of I-125 BT and individualized I-125 ablative radiotherapy. Of note, utilizing I-125 to treat carcinoma in hollow cavity organs was enabled by the utility of self-expandable metal stents (SEMSs). Initially, I-125 BT was only used in the treatment of rare tumors. However, an increasing number of clinical trials upheld the efficacy and safety of I-125 BT in almost all tumors. Therefore, this study aims to summarize the recent advances of I-125 BT in cancer therapy, which cover experimental research to clinical investigations, including the development of novel techniques. This review also raises unanswered questions that may prompt future clinical trials and experimental work.


2021 ◽  
Vol 27 (3) ◽  
pp. 181-190
Author(s):  
Mojtaba Abazarfard ◽  
Payam Azadeh ◽  
Ahmad Mostaar

Abstract Purpose: Advanced radiation therapy techniques use small fields in treatment planning and delivery. Small fields have the advantage of more accurate dose delivery, but with the cost of some complications in dosimetry. Different dose calculation algorithms imported in various treatment planning systems (TPSs) which each of them has different accuracy. Monte Carlo (MC) simulation has been reported as one of the accurate methods for calculating dose distribution in radiation therapy. The aim of this study was the evaluation of TPS dose calculation algorithms in small fields against 2 MC codes. Methods: A linac head was simulated in 2 MC codes, MCNPX, and GATE. Then three small fields (0.5×0.5, 1×1 and 1.5×1.5 cm2) were simulated with 2 MC codes, and also these fields were planned with different dose calculation algorithms in Isogray and Monaco TPS. PDDs and lateral dose profiles were extracted and compared between MC simulations and dose calculation algorithms. Results: For 0.5×0.5 cm2 field mean differences in PDDs with MCNPX were 2.28, 4.6, 5.3, and 7.4% and with GATE were -0.29, 2.3, 3 and 5% for CCC, superposition, FFT and Clarkson algorithms respectively. For 1×1 cm2 field mean differences in PDDs with MCNPX were 1.58, 0.6, 1.1 and 1.4% and with GATE were 0.77, 0.1, 0.6 and 0.9% for CCC, superposition, FFT and Clarkson algorithms respectively. For 1.5×1.5 cm2 field mean differences in PDDs with MCNPX were 0.82, 0.4, 0.6 and -0.4% and with GATE were 2.38, 2.5, 2.7 and 1.7% for CCC, superposition, FFT and Clarkson algorithms respectively. Conclusions: Different dose calculation algorithms were evaluated and compared with MC simulation in small fields. Mean differences with MC simulation decreased with the increase of field sizes for all algorithms.


2021 ◽  
Vol 161 ◽  
pp. S431-S432
Author(s):  
Y. Jourani ◽  
A. Delor ◽  
W. Crijns ◽  
G. Bol ◽  
R.G.J. Kierkels ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 36-51
Author(s):  
Nikolaos Chatzisavvas ◽  
Georgios Priniotakis ◽  
Michael Papoutsidakis ◽  
Dimitrios Nikolopoulos ◽  
Ioannis Valais ◽  
...  

The fast developments and ongoing demands in radiation dosimetry have piqued the attention of many software developers and physicists to create powerful tools to make their experiments more exact, less expensive, more focused, and with a wider range of possibilities. Many software toolkits, packages, and programs have been produced in recent years, with the majority of them available as open source, open access, or closed source. This study is mostly focused to present what are the Monte Carlo software developed over the years, their implementation in radiation treatment, radiation dosimetry, nuclear detector design for diagnostic imaging, radiation shielding design and radiation protection. Ten software toolkits are introduced, a table with main characteristics and information is presented in order to make someone entering the field of computational Physics with Monte Carlo, make a decision of which software to use for their experimental needs. The possibilities that this software can provide us with allow us to design anything from an X-Ray Tube to whole LINAC costly systems with readily changeable features. From basic x-ray and pair detectors to whole PET, SPECT, CT systems which can be evaluated, validated and configured in order to test new ideas. Calculating doses in patients allows us to quickly acquire, from dosimetry estimates with various sources and isotopes, in various materials, to actual radiation therapies such as Brachytherapy and Proton therapy. We can also manage and simulate Treatment Planning Systems with a variety of characteristics and develop a highly exact approach that actual patients will find useful and enlightening. Shielding is an important feature not only to protect people from radiation in places like nuclear power plants, nuclear medical imaging, and CT and X-Ray examination rooms, but also to prepare and safeguard humanity for interstellar travel and space station missions. This research looks at the computational software that has been available in many applications up to now, with an emphasis on Radiation Dosimetry and its relevance in today's environment.


2021 ◽  
Author(s):  
Aysun Inal ◽  
Songul Barlaz Us

Abstract Metal Artefact Reduction (MAR) is very important in terms of dose calculation in radiotherapy. It was aimed to develop an in-house MAR software as an alternative to commercial software programs and to examine its effectiveness by comparing it with the SMART-MAR software which was available commercially. A phantom containing metal with high atomic number was designed and computed tomography (CT) images of this phantom were taken (Without-MAR images). The obtained CT images were processed with the SMART-MAR software and the developed In-House MAR software. Processed images were compared in terms of Hounsfield unit (HU), absolute dose values ​​in the Accuray and CMS XiO treatment planning systems, and gamma evaluation. The best HU improvement was observed in the developed In-House MAR. The maximum mean percentage differences in absorbed doses at the determined points in Accuray was found 33.3% and 32.5% between Without MAR - SMART MAR and Without MAR- In-House MAR, respectively. The In-House MAR software developed by using MATLAB was shown similar results with the SMART MAR software. Although in-house MAR software needs to be investigated clinically, it is more advantageous than commercially available software in terms of being cost-free, applicability in a shorter time and without reconstruction.


2021 ◽  
Vol 11 (1) ◽  
pp. 58-67
Author(s):  
P. A. Lushnikova ◽  
E. S. Sukhikh ◽  
P. V. Izhevsky ◽  
Ya. N. Sutygina ◽  
M. A. Tatarchenko ◽  
...  

Cervical cancer is a socially significant illness often impacting women of reproductive and working age. The patients’ young age and social activity warrant the development of effective and safe therapies.The past decades have witnessed the novel radiation techniques to contain cervical cancer: 3DCRT-3D, IMRT, and VMAT, adaptive radiotherapy, CT/MRI-guided intracavitary radiation, combined interstitial and intracavitary radiation, abandoning intracavitary intervention for external beam delivery with sequential or concurrent cervical dose escalation, under brachytherapy unfeasible.Modern equipment and treatment planning systems allow a high dose delivery to the tumour and intracavitary treatment with visual control of the target and organs at risk. Combining of intracavitary and interstitial radiotherapy enables a better dose coverage of the target at a minimal radiation impact on organs at risk.Phasing-out of intracavitary for external radiotherapy may enable a cancericide dose delivery to the tumour under intractable intracavitary treatment.The major goal of technic novelties is the establishment of personalised radiotherapy for improving treatment outcomes and reducing the incidence and/or severity of radiation side effects. The article overviews the radiotherapy techniques for cervical cancer treatment and routes of their development.


2021 ◽  
Vol 60 (2) ◽  
Author(s):  
N Saiyo ◽  
◽  
S Thongsawad ◽  
P Changphong ◽  
T Khotsawan ◽  
...  

Objectives The purpose of this study was to verify the 80% enhanced dynamic wedge (EDW) beam profile using an electronic portal imaging device (EPID). Methods This study investigated symmetric and asymmetric field sizes using a 6 MV photon beam. Verification of the wedge output factor with an 80% beam profile was performed by comparing EPID measurements and treatment planning systems (TPS) calculations in both symmetric and asymmetric field sizes at different wedge angles (15, 30, 45, and 60 degrees). Results For the symmetric field size, the average difference between the measured and calculated beam profile was less than 2% (range 0.57-1.12%). For the asymmetric field size, the difference was also less than 2% (range 0.3-0.52%). Conclusion This study indicates that EPID can be used to verify the 80% enhanced dynamic wedge beam profile at different field sizes and wedge angles. The difference in beam profiles was less than 2% which is in accordance with AAPM TG no.142 recommendations.


Sign in / Sign up

Export Citation Format

Share Document