scholarly journals Proteomics support the threespine stickleback egg coat as a protective oocyte envelope

Author(s):  
Emily E. Killingbeck ◽  
Damien B. Wilburn ◽  
Gennifer E. Merrihew ◽  
Michael J. MacCoss ◽  
Willie J. Swanson
2020 ◽  
Author(s):  
Emily E. Killingbeck ◽  
Damien B. Wilburn ◽  
Gennifer E. Merrihew ◽  
Michael J. MacCoss ◽  
Willie J. Swanson

AbstractAfter the end of the last ice age, ancestrally marine threespine stickleback fish (Gasterosteus aculeatus) have undergone an adaptive radiation into freshwater environments throughout the Northern Hemisphere, creating an excellent model system for studying molecular adaptation and speciation. Stickleback populations are reproductively isolated to varying degrees, despite the fact that they can be crossed in the lab to produce viable offspring. Ecological and behavioral factors have been suggested to underlie incipient stickleback speciation. However, reproductive proteins represent a previously unexplored driver of speciation. As mediators of gamete recognition during fertilization, reproductive proteins both create and maintain species boundaries. Gamete recognition proteins are also frequently found to be rapidly evolving, and their divergence may culminate in reproductive isolation and ultimately speciation. As an initial investigation into the contribution of reproductive proteins to stickleback reproductive isolation, we characterized the egg coat proteome of threespine stickleback eggs. In agreement with other teleosts, we find that stickleback egg coats are comprised of homologs to the zona pellucida (ZP) proteins ZP1 and ZP3. We explore aspects of stickleback ZP protein biology, including glycosylation, disulfide bonding, and sites of synthesis, and find many substantial differences compared to their mammalian homologs. Furthermore, molecular evolutionary analyses indicate that ZP3, but not ZP1, has experienced positive Darwinian selection across teleost fish. Taken together, these changes to stickleback ZP protein architecture suggest that the egg coats of stickleback fish, and perhaps fish more generally, have evolved to fulfill a more protective functional role than their mammalian counterparts. Data are available via ProteomeXchange with identifiers PXD017488 and PXD017489.


Zoomorphology ◽  
2020 ◽  
Author(s):  
Harald Ahnelt ◽  
David Ramler ◽  
Maria Ø. Madsen ◽  
Lasse F. Jensen ◽  
Sonja Windhager

AbstractThe mechanosensory lateral line of fishes is a flow sensing system and supports a number of behaviors, e.g. prey detection, schooling or position holding in water currents. Differences in the neuromast pattern of this sensory system reflect adaptation to divergent ecological constraints. The threespine stickleback, Gasterosteus aculeatus, is known for its ecological plasticity resulting in three major ecotypes, a marine type, a migrating anadromous type and a resident freshwater type. We provide the first comparative study of the pattern of the head lateral line system of North Sea populations representing these three ecotypes including a brackish spawning population. We found no distinct difference in the pattern of the head lateral line system between the three ecotypes but significant differences in neuromast numbers. The anadromous and the brackish populations had distinctly less neuromasts than their freshwater and marine conspecifics. This difference in neuromast number between marine and anadromous threespine stickleback points to differences in swimming behavior. We also found sexual dimorphism in neuromast number with males having more neuromasts than females in the anadromous, brackish and the freshwater populations. But no such dimorphism occurred in the marine population. Our results suggest that the head lateral line of the three ecotypes is under divergent hydrodynamic constraints. Additionally, sexual dimorphism points to divergent niche partitioning of males and females in the anadromous and freshwater but not in the marine populations. Our findings imply careful sampling as an important prerequisite to discern especially between anadromous and marine threespine sticklebacks.


Author(s):  
L. Leveelahti ◽  
P. Leskinen ◽  
E.H. Leder ◽  
W. Waser ◽  
M. Nikinmaa

Genetics ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Juntao Hu ◽  
Sara J S Wuitchik ◽  
Tegan N Barry ◽  
Heather A Jamniczky ◽  
Sean M Rogers ◽  
...  

Abstract Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24–35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.


Sign in / Sign up

Export Citation Format

Share Document