reproductive tactics
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 75)

H-INDEX

47
(FIVE YEARS 3)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Adam N. Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Abstract Background Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite—in which males are either armed fighters that kill conspecifics, or unarmed scramblers (which have occasionally been observed to induce mating behavior in other males)—as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher quantities of the putative female sex-pheromone α-acaridial than fighters, which would improve the fitness of the scrambler phenotype through female mimicry by allowing avoidance of aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of α-acaridial through gas chromatography analysis. Results We found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. Conclusion Further elucidation of pheromone functionality in bulb mites, and additional inter- and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a by-product of allometric scaling, or diet-mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


2021 ◽  
Author(s):  
Tyler H. Lantiegne ◽  
Craig F. Purchase

Polyandrous mating systems result in females mating with multiple males. This includes the potential for unintended matings and subsequent sperm competition with hybridizing species, especially in the presence of alternative reproductive tactics (sneaker males). Cryptic female choice allows females to bias paternity towards preferred males under sperm competition and may include conspecific sperm preference when under hybridization threat. The potential becomes particularly important in context of invasive species that can novelly hybridize with natives. We provide the first examination of conspecific sperm preference in a system of three species with potential to hybridize: North American native Atlantic salmon (Salmo salar) and brook char (Salvelinus fontinalis), and invasive brown trout (Salmo trutta) from Europe. Using naturalized populations on the island of Newfoundland, we measured changes in sperm swimming performance, a known predictor of paternity, to determine the degree of upregulation to female cues related to conspecific sperm preference. Compared to water alone, female ovarian fluid in general had a pronounced effect and upregulated sperm motility (mean 53%) and swimming velocity (mean 30%). However, patterns in the degree of upregulation suggest there is no conspecific sperm preference in the North American populations. Furthermore, female cues from both native species tended to boost the sperm of invasive males more than their own. We conclude that cryptic female choice is too weak in this system to prevent invasive hybridization and is likely insufficient to promote or maintain reproductive isolation between the native species.


2021 ◽  
Author(s):  
Madilyn Marisa Gamble ◽  
Ryan G Calsbeek

Alternative reproductive tactics (ARTs) are ubiquitous throughout the animal kingdom and widely regarded as an outcome of high variance in reproductive success. Proximate mechanisms underlying ARTs include genetically based polymorphisms, environmentally induced polymorphisms, and those mediated by a combination of genetic and environmental factors. However, few ultimate mechanisms have been proposed to explain the maintenance of ARTs over time, the most important of which have been disruptive and negative frequency-dependent selection. Here we explore the role that intralocus sexual conflict may play in the maintenance of sex-specific ARTs. We use a genetically explicit individual-based model in which body size influences both female fecundity and male tactic through a shared genetic architecture. By modeling ART maintenance under varying selection regimes and levels of sex-specific gene expression, we explore the conditions under which intralocus sexual conflict can maintain a hypothetical ART defined by larger (alpha) and smaller (beta) tactics. Our models consistently revealed that sexual conflict can result in the persistence of a sex-specific polymorphism over hundreds of generations, even in the absence of negative frequency-dependent selection. ARTs were maintained through correlated selection when one male ART has lower fitness but produces daughters with higher fitness. These results highlight the importance of understanding selection on both sexes when attempting to explain the maintenance of ARTs. Our results are consistent with a growing literature documenting genetic correlations between male ARTs and female fitness, suggesting that the maintenance of sex-specific ARTs through intralocus sexual conflict may be common and widespread in nature.


2021 ◽  
Author(s):  
Bridget M. Nugent ◽  
Kelly A. Stiver ◽  
Jiawei Han ◽  
Holly K Kindsvater ◽  
Susan E. Marsh-Rollo ◽  
...  

Uncovering the genetic, physiological, and developmental mechanisms underlying phenotypic variation is necessary for understanding how genetic and genomic variation shape phenotypic variation and for discovering possible targets of selection. Although the neural and endocrine mechanisms underlying social behavior are evolutionarily ancient, we lack an understanding of the proximate causes and evolutionary consequences of variation in these mechanisms. Here, we examine in the natural environment the behavioral, neuromolecular, and fitness consequences of a morpholino-mediated knockdown of the mineralocorticoid receptor (MR) in the brain of nesting males of the ocellated wrasse, Symphodus ocellatus, a species with male alternative reproductive tactics. Even though MR knockdown did not significantly change male behavior directly, this experimental manipulation strongly altered glucocorticoid signaling and neuroplasticity in the preoptic area, the putative hippocampus homolog, and the putative basolateral amygdala homolog. We also found that individual variation in stress axis gene expression and neuroplasticity is strongly associated with variation in male behavior and fitness-related traits. The brain region-specific effects of MR knockdown on phenotypic integration in the wild reported here suggest specific neuroendocrine and neuroplasticity pathways that may be targets of selection.


2021 ◽  
Author(s):  
Yumeng Pang ◽  
Chih-Shin Chen ◽  
Tomohiko Kawamura ◽  
Yoko Iwata

Abstract Squid are characterized by flexible life-history traits (LHTs) that change in response to changing oceanic parameters. Male alternative reproductive tactics (ARTs), characterized by large-sized ‘consorts’ versus small-sized ‘sneakers’, are commonly observed in loliginid species. This study reports on LHTs flexibility in male squids displaying ARTs. LHTs of consorts and sneakers in Uroteuthis edulis, including body size, age, growth rate and gonado-somatic energy allocation, were compared among seasonal and geographical groups from Japan and Taiwan. The ratio of consorts to sneakers was highest in the group spawning in the ‘Japan-warm’ season (June-November), followed by that of the ‘Japan-cold’ season (December-May), and lowest in Taiwan (spring and autumn). LHTs were compared among cohorts separated by hatching season and catch location (Jwarm, Jcold and Taiwan cohorts). Mean body size of consorts showed no difference among cohorts, although Taiwan consorts were relatively younger than Japan consorts. Mean size and age of sneakers decreased with increased water temperature at hatching. Growth rates of consorts and sneakers were slightly different among cohorts, in accordance with differences of statolith increment widths during their early life stage (50-150 d). Growth rates of both consorts and sneakers were highest in the Taiwan cohort, followed by the Jwarm cohort, with the Jcold cohort lowest. Sneakers invested more both in mantle and gonadal weights than consorts in all cohorts. Gonado-somatic energy allocation patterns of consorts and sneakers were consistent at different temperatures. LHTs of U. edulis consorts and sneakers were strongly influenced by temperature, with higher flexibility in sneakers than consorts.


2021 ◽  
Author(s):  
Hana’a Burezq

Plants display an assorted collection of reproductive tactics that eventually play a crucial role in perpetuation of species. Plant reproductive ecology is principally concerned with the adaptive implications of the plant in their vicinity, disparity in qualities allied with pollination, seed dispersal, and seedling establishment. The success in reproduction in most flowering plants depends on ecological interactions with pollinators and seed dispersal agents. Modern tactics in reproductive ecology can integrate proper surveys, advanced pollination studies, interaction between flower and pollinators and clear assessments of population genetic structure, which can provide new opportunities for plant reproductive biology. Alfalfa is an important forage legume and known as “Queen of forages” due to its worldwide adaptability, high yield potential and quality. Alfalfa produces seeds which are primarily used for forage production. It is a gift to livestock industry including dairy, beef, horses, and sheep for grazing, silage, hay etc. Alfalfa is also a medicinal herb with antioxidant, antidiabetic, anti-inflammatory, neuroprotective and cardioprotective properties, utilized for treatment of arthritis, kidney problems. The seeds are exploited in alfalfa sprout industry. The current chapter highlights the reproductive biology of alfalfa from flower development to seed production and its advances.


2021 ◽  
Vol 9 ◽  
Author(s):  
Feng Chen ◽  
Carl Smith ◽  
Yeke Wang ◽  
Jun He ◽  
Wulai Xia ◽  
...  

Alternative reproductive tactics (ARTs) are behavioural, morphological, and physiological traits associated with alternative reproductive phenotypes within a population or species. ARTs are widespread in nature, and are a particular feature of teleost fishes. However, few studies have examined egg buoyancy mechanisms in the context of the evolution of ARTs in freshwater fishes. In marine fishes, egg buoyancy is achieved chiefly through hydration. While the buoyancy of freshwater fish eggs has been suggested to be determined primarily through the presence of oil droplets, the majority (60%) of freshwater pelagic eggs do not possess an oil droplet. We applied a physical model of buoyancy to understand the contributions of oil droplets and hydration to the buoyancy of pelagic freshwater fish eggs. We further used phylogenetic regression to estimate the effect of the relative size of the perivitelline space, habitat and parental care on the occurrence of oil droplets, while controlling for non-independence among species due to phylogenetic relatedness. Our analysis demonstrates that the probability of oil droplets in freshwater pelagic eggs exhibits a significant negative relationship with the size of perivitelline space, which may reflect a trade-off relating to energy allocation in contrasting habitats. We also demonstrate a positive association between the probability of oil droplets and the provision of parental care and occupancy of lentic habitats. These findings indicates the evolution of contrasting buoyancy mechanisms as novel ARTs in freshwater fishes. A theoretical model in combination with empirical analysis indicate the evolution of novel ARTs in freshwater fishes as adaptive responses to flow conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256745
Author(s):  
Noritaka Hirohashi ◽  
Noriyosi Sato ◽  
Yoko Iwata ◽  
Satoshi Tomano ◽  
Md. Nur E. Alam ◽  
...  

Sperm morphology is generally uniform within a species due to selective pressures that act to achieve better fertilization outcomes under postcopulatory competitive circumstances. Therefore, polyandry that intensifies post-mating sperm competition should constrain intraspecific sperm polymorphism. Contrary to this paradigm, we previously found that a polyandrous squid, Heterololigo bleekeri, produces dimorphic eusperm (flagellum length dimorphism; FLD), which is closely associated with alternative reproductive tactics (ARTs); large males (consorts) transfer their spermatophores inside the female’s mantle cavity, while small males (sneakers) do so outside the mantle. Thus, FLD was considered as the consequence of different insemination strategies that arise from different modes of sperm competition, sperm storage and the fertilization environment. However, in other squid species showing ARTs, the choice of mating behaviour is rather conditional (i.e., switching mating tactic between consorts and sneakers), which poses the question of whether sperm FLD could have evolved. Here, we investigated five species in the family Loliginidae that exhibit ARTs and found that all species showed sneaker-biased FLD. However, in a species with conditional ARTs, we found FLD rather ambiguous and the testicular somatic index to be nearly continuous among individuals at transitional state, suggesting that plasticity in mating behaviour compromises the disruptive selection on a sperm morphological trait.


2021 ◽  
Vol 288 (1956) ◽  
pp. 20211069
Author(s):  
Samuel J. Lymbery ◽  
Joseph L. Tomkins ◽  
Bruno A. Buzatto ◽  
David J. Hosken

Conditional strategies occur when the relative fitness pay-off from expressing a given phenotype is contingent upon environmental circumstances. This conditional strategy model underlies cases of alternative reproductive tactics, in which individuals of one sex employ different means to obtain reproduction. How kin structure affects the expression of alternative reproductive tactics remains unexplored. We address this using the mite Rhizoglyphus echinopus , in which large males develop into aggressive ‘fighters’ and small males develop into non-aggressive ‘scramblers.’ Because only fighters kill their rivals, they should incur a greater indirect fitness cost when competing with their relatives, and thus fighter expression could be reduced in the presence of relatives. We raised mites in full-sibling or mixed-sibship groups and found that fighters were more common at higher body weights in full-sibling groups, not less common as we predicted (small individuals were almost exclusively scramblers in both treatments). This result could be explained if relatedness and cue variability are interpreted signals of population density, since fighters are more common at low densities in this species. Alternatively, our results may indicate that males compete more intensely with relatives in this species. We provide the first evidence of kin-mediated plasticity in the expression of alternative reproductive tactics.


2021 ◽  
Author(s):  
Adam N. Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Abstract BackgroundUnder strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite—in which males are either armed fighters that kill conspecifics, or unarmed scramblers—as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher pheromone quantities than fighters, which would improve the fitness of the scrambler phenotype, e.g. through female mimicry to avoid aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of the female sex pheromone α-acaridial through gas chromatography analysis. ResultsWe found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. ConclusionFurther elucidation of pheromone functionality in bulb mites, and additional inter- and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a by-product of allometric scaling, or diet-mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


Sign in / Sign up

Export Citation Format

Share Document