scholarly journals Detecting pulmonary capillary blood pulsations using hyperpolarized xenon-129 chemical shift saturation recovery (CSSR) MR spectroscopy

2015 ◽  
Vol 75 (4) ◽  
pp. 1771-1780 ◽  
Author(s):  
Kai Ruppert ◽  
Talissa A. Altes ◽  
Jaime F. Mata ◽  
Iulian C. Ruset ◽  
F. William Hersman ◽  
...  

1980 ◽  
Vol 303 (15) ◽  
pp. 842-845 ◽  
Author(s):  
G. V. R. K. Sharma ◽  
Virginia A. Burleson ◽  
Arthur A. Sasahara ◽  
Barbara Roggeveen ◽  
Nazarene Mondello ◽  
...  


1994 ◽  
Vol 77 (4) ◽  
pp. 1795-1800 ◽  
Author(s):  
J. C. Hogg ◽  
H. O. Coxson ◽  
M. L. Brumwell ◽  
N. Beyers ◽  
C. M. Doerschuk ◽  
...  

Pulmonary capillary transit times were examined in patients who required lung resection by use of 99mTc-labeled macroaggregates (99Tc-MAA) and chromium-labeled erythrocytes (51Cr-RBC) to measure regional blood flow and volume in the resected lung. Cell flow (cells.ml-1.s-1) to each resected lung sample was determined by multiplying the number of polymorphonuclear leukocytes (PMN) per milliliter of circulating blood by the blood flow to that sample. Capillary blood volume was obtained by multiplying the morphometrically determined fraction of pulmonary blood in capillaries by the total 51Cr-RBC volume in each sample. Cell concentrations (cells/ml) in capillary blood were calculated morphometrically, and capillary transit times were obtained by dividing cell concentration by cell flow. The results show that PMN transit times were 60–100 times longer than the RBC transit times, with a 22% overlap between their distributions. We conclude that PMN are concentrated with respect to RBC in pulmonary capillary blood because of differences in their transit times and that these long transit times provide an opportunity for PMN-endothelial interactions.





1956 ◽  
Vol 5 (2) ◽  
pp. 69-82
Author(s):  
HIROSHI SASAMOTO ◽  
SHUNTETSU YOH




1997 ◽  
Vol 83 (3) ◽  
pp. 810-816 ◽  
Author(s):  
Sylvia Verbanck ◽  
Hans Larsson ◽  
Dag Linnarsson ◽  
G. Kim Prisk ◽  
John B. West ◽  
...  

Verbanck, Sylvia, Hans Larsson, Dag Linnarsson, G. Kim Prisk, John B. West, and Manuel Paiva. Pulmonary tissue volume, cardiac output and diffusing capacity in sustained microgravity. J. Appl. Physiol. 83(3): 810–816, 1997.—In microgravity (μG) humans have marked changes in body fluids, with a combination of an overall fluid loss and a redistribution of fluids in the cranial direction. We investigated whether interstitial pulmonary edema develops as a result of a headward fluid shift or whether pulmonary tissue fluid volume is reduced as a result of the overall loss of body fluid. We measured pulmonary tissue volume (Vti), capillary blood flow, and diffusing capacity in four subjects before, during, and after 10 days of exposure to μG during spaceflight. Measurements were made by rebreathing a gas mixture containing small amounts of acetylene, carbon monoxide, and argon. Measurements made early in flight in two subjects showed no change in Vti despite large increases in stroke volume (40%) and diffusing capacity (13%) consistent with increased pulmonary capillary blood volume. Late in-flight measurements in four subjects showed a 25% reduction in Vti compared with preflight controls ( P < 0.001). There was a concomittant reduction in stroke volume, to the extent that it was no longer significantly different from preflight control. Diffusing capacity remained elevated (11%; P< 0.05) late in flight. These findings suggest that, despite increased pulmonary perfusion and pulmonary capillary blood volume, interstitial pulmonary edema does not result from exposure to μG.



Sign in / Sign up

Export Citation Format

Share Document