Wave-induced stresses and pore pressures in sloping seabeds

Author(s):  
Behrouz Gatmiri
Author(s):  
Chengcong Liao ◽  
Hongyi Zhao ◽  
Dong-Sheng Jeng

In this study, a two-dimensional poro-elasto-plastic model for the wave-induced liquefaction in a porous seabed was presented. Two mechanisms of the wave-induced pore pressures were considered. Both elastic components (for oscillatory) and the plastic components (for residual) were integrated to predict the wave-induced excess pore pressures in marine sediments. The proposed 2D poro-elasto-plastic model allows for the pore pressure build-up process in a sandy seabed. The proposed model overall agreed well with the previous wave experiments and centrifuge tests. Numerical example shows that the pattern of progressive waves -induced liquefaction gradually changed from 2D to 1D.


2018 ◽  
Vol 157 ◽  
pp. 364-375 ◽  
Author(s):  
Chencong Liao ◽  
Dagui Tong ◽  
Dong-Sheng Jeng ◽  
Hongyi Zhao

Géotechnique ◽  
1981 ◽  
Vol 31 (4) ◽  
pp. 509-517 ◽  
Author(s):  
Chiang C. Mei ◽  
Mostafa A. Foda

2019 ◽  
Vol 49 (6) ◽  
pp. 1369-1379 ◽  
Author(s):  
Joey J. Voermans ◽  
Henrique Rapizo ◽  
Hongyu Ma ◽  
Fangli Qiao ◽  
Alexander V. Babanin

AbstractObservations of wind stress during extreme winds are required to improve predictability of tropical cyclone track and intensity. A common method to approximate the wind stress is by measuring the turbulent momentum flux directly. However, during high wind speeds, wave heights are typically of the same order of magnitude as instrument heights, and thus, turbulent momentum flux observations alone are insufficient to estimate wind stresses in tropical cyclones, as wave-induced stresses contribute to the wind stress at the height of measurements. In this study, wind stress observations during the near passage of Tropical Cyclone Olwyn are presented through measurements of the mean wind speed and turbulent momentum flux at 8.8 and 14.8 m above the ocean surface. The high sampling frequency of the water surface displacement (up to 2.5 Hz) allowed for estimations of the wave-induced stresses by parameterizing the wave input source function. During high wind speeds, our results show that the discrepancy between the wind stress and the turbulent stress can be attributed to the wave-induced stress. It is observed that for > 1 m s−1, the wave-induced stress contributes to 63% and 47% of the wind stress at 8.8 and 14.8 m above the ocean surface, respectively. Thus, measurements of wind stresses based on turbulent stresses alone underestimate wind stresses during high wind speed conditions. We show that this discrepancy can be solved for through a simple predictive model of the wave-induced stress using only observations of the turbulent stress and significant wave height.


Sign in / Sign up

Export Citation Format

Share Document