plastic model
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 98)

H-INDEX

33
(FIVE YEARS 5)

2021 ◽  
pp. 441-451
Author(s):  
Guoyang Liu ◽  
Junfang Xia ◽  
Kan Zheng ◽  
Jian Cheng ◽  
Liu Jiang ◽  
...  

In order to study the compressive creep properties and laws of paddy soil, multi-stress creep experiments of paddy soil with different moisture content were carried out. The results show that the creep deformation of paddy soil, subjected to compressive loads effect, develops stably and the paddy soil is not destructed under the yield strength when the stress is low. When the stress level is higher than the yield strength, the internal damage of paddy soil would be caused at the moment of loading. With the extension of creep time, the cracks would gradually expand, resulting in the soil to yield, break and disintegrate. According to the analysis of the deformation properties of paddy soil under compression and the change trend of creep curve, the nonlinear viscoelastic-plastic model was composed of the nonlinear viscoplastic model and Burgers model in series. The creep test curve was introduced into the model for fitting, and the coefficient of determination reached more than 0.96. Based on the model, the strain composition, strain proportion, and strain rate of paddy soil were studied. Finally, the nonlinear model was compared with Burgers model by verification test. The fitting accuracy of the nonlinear model was better than Burgers model, and the coefficient of determination and relative error were 0.997 and 0.437%, respectively, which proved the rationality and correctness of the nonlinear viscoelastic-plastic model. This study can provide a theoretical basis for the optimization of tillage machinery structure and the simulation analysis of soil tillage and compaction.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2139
Author(s):  
Ruofan Wang ◽  
Feitao Zeng ◽  
Li Li

The compressibility of mining backfill governs its resistance to the closure of surrounding rock mass, which should be well reflected in numerical modeling. In most numerical simulations of backfill, the Mohr–Coulomb elasto-plastic model is used, but is constantly criticized for its poor representativeness to the mechanical response of geomaterials. Finding an appropriate constitutive model to better represent the compressibility of mining backfill is critical and necessary. In this paper, Mohr–Coulomb elasto-plastic model, double-yield model, and Soft Soil model are briefly recalled. Their applicability to describing the backfill compressibility is then assessed by comparing numerical and experimental results of one-dimensional consolidation and consolidated drained triaxial compression tests made on lowly cemented backfills available in the literature. The comparisons show that the Soft Soil model can be used to properly describe the experimental results while the application of the Mohr–Coulomb model and double-yield model shows poor description on the compressibility of the backfill submitted to large and cycle loading. A further application of the Soft Soil model to the case of a backfilled stope overlying a sill mat shows stress distributions close to those obtained by applying the Mohr–Coulomb model when rock wall closure is absent. After excavating the underlying stope, rock wall closure is generated and exercises compression on the overlying backfill. Compared to the results obtained by applying the Soft Soil model, an application of the Mohr–Coulomb model tends to overestimate the stresses in the backfill when the mine depth is small and underestimate the stresses when the mine depth is large due to the poor description of fill compressibility. The Soft Soil model is recommended to describe the compressibility of uncemented or lightly cemented backfill with small cohesions under external compressions associated with rock wall closure.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 419
Author(s):  
Armando Carravetta ◽  
Oreste Fecarotta ◽  
Riccardo Martino ◽  
Maria Cristina Morani

The rheological behavior of non-Newtonian fluids in turbulent conditions is an important topic in several fields of engineering. Nevertheless, this topic was not deeply investigated in the past due to the complexity of the experimental tests for the assessment of the constitutive parameters. Pressure pipe tests on Herschel-Bulkley mixtures were proven to be suitable for exploring turbulent conditions, but discrepancies with the results of tests performed in laminar flow were detected. These contradictions could be attributed to the inconsistencies of the Herschel-Bulkley model (HB) for high shear rate flows, proven by Hallbom and Klein, who suggested a more general “yield plastic” model (HK). Hence, in this study, a procedure for the estimation of the rheological parameters of both HB and HK models in pressure pipe tests is defined and rated on a complete set of experiments. The HK model performed much better than HB model in the turbulent range and slightly better than the HB model in the laminar range, confirming the consistency of the “yield plastic” model. The rheological parameters obtained by the proposed procedure were used to numerically model a dam-break propagation of a non-Newtonian fluid, showing significant differences in terms of process evolution depending on the constitutive model.


2021 ◽  
Vol 118 (47) ◽  
pp. e2111530118
Author(s):  
Yiming Peng ◽  
Peipei Wu ◽  
Amina T. Schartup ◽  
Yanxu Zhang

The COVID-19 pandemic has led to an increased demand for single-use plastics that intensifies pressure on an already out-of-control global plastic waste problem. While it is suspected to be large, the magnitude and fate of this pandemic-associated mismanaged plastic waste are unknown. Here, we use our MITgcm ocean plastic model to quantify the impact of the pandemic on plastic discharge. We show that 8.4 ± 1.4 million tons of pandemic-associated plastic waste have been generated from 193 countries as of August 23, 2021, with 25.9 ± 3.8 thousand tons released into the global ocean representing 1.5 ± 0.2% of the global total riverine plastic discharge. The model projects that the spatial distribution of the discharge changes rapidly in the global ocean within 3 y, with a significant portion of plastic debris landing on the beach and seabed later and a circumpolar plastic accumulation zone will be formed in the Arctic. We find hospital waste represents the bulk of the global discharge (73%), and most of the global discharge is from Asia (72%), which calls for better management of medical waste in developing countries.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiuchang Zhang ◽  
Yue Li ◽  
Rubin Wang

Gravelly soils exhibit complicated mechanical behaviours closely related to particle breakage and relative density state. To better capture the mechanical responses of gravelly soils, a generalised plastic model considering evolution of void ratio and particle breakage was developed within the framework of critical state soil mechanics. In the model, particle breakage effect was described by incorporating breakage index to deviate the critical state line off the ideal position. A differential equation relating increment of void ratio to variation of volumetric strain was used to depict the evolution of current void ratio. It indirectly reflected the relative density state of gravelly soils. The model was applied to conducting numerical simulations for a series of triaxial tests on four types of gravelly soils. Comparisons between the test data and the modelling results indicated that considerations of void ratio evolution and particle breakage could better simulate the stress-dependent dilatation/contraction behaviours of gravelly soils.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022033
Author(s):  
Radosław Jasiński ◽  
Krzysztof Grzyb

Abstract The adopted method of empirical homogenization strictly determines the degree of faithful reproduction of the masonry structure's work in terms of the analysis of cracking forces, destructive forces, and the mechanism of structure destruction. The high level of detail of the numerical model may make it impossible to perform calculations and predict internal forces for larger structures or entire buildings. The study aims to compare two different masonry homogenization techniques and determine the advantages and disadvantages of the adopted methods. The concept of a micromodel, in which the contact of two materials - a masonry unit and a mortar, was simulated using contact elements in the interface planes and a macromodel in which the wall was modelled as a homogeneous, isotropic material, omitting contact surfaces. The analysis subjects were standard wall models made of autoclaved aerated concrete (AAC) masonry units in axial and diagonal compression tests. In the numerical calculations, the elasto-plastic model with degradation implemented. The Menetrey William boundary surface describes the compression phase, and the Rankine criterion determines the tensile phase. In the axially compressed walls, the relations of forces and vertical and horizontal deformations compared, and in the shear walls, the forces and values of strain angles analyzed. In both models, the mechanisms of wall destruction and scratching were considered. The initial parameters of the elasto-plastic model derived from the results of wall tests using various model validation techniques. The calibration coefficient was used in the micromodel, determined as the quotient of the wall's compressive strength and masonry unit's compressive strength. The fracture energy value was also corrected. In the macromodel, the masonry's modulus of elasticity and the tensile strength value calibrated. Calculations based on the micromodel were consistent with the test results at the relative error level of 2%. The observed damage and scratches to the walls after the tests were consistent with the numerical projection. The macromodel calculations showed the convergence of the results in scratch morphology, scratching and destructive forces. The most significant differences occurred in shear deformations. The macromodelling approach allowed for capturing the wall's global tendency to deteriorate without opening the contact surfaces locally (cohesive cracks), as is the case during the tests.


Sign in / Sign up

Export Citation Format

Share Document