momentum flux
Recently Published Documents


TOTAL DOCUMENTS

885
(FIVE YEARS 148)

H-INDEX

60
(FIVE YEARS 5)

2021 ◽  
Vol 55 (13) ◽  
pp. 135201
Author(s):  
Ryoji Imai ◽  
Kazunori Takahashi

Abstract Two-dimensional characterization of the plasma plume is experimentally performed downstream of a magnetically steered radiofrequency plasma thruster, where the ion beam current, the ion saturation current, and the horizontal dynamic momentum flux, are measured by using the retarding field energy analyzer, the Langmuir probe, and the momentum vector measurement instrument, respectively, in addition to the previously measured horizontal thrust. The measurements show the deflections of the dynamic momentum flux including both the ions and the neutrals; the change in the direction of the dynamic momentum flux is consistent with the previously measured horizontal thrust. Furthermore, the ion saturation current profile implies that the deflected electron-diamagnetic-induced Lorentz force exerted to the magnetic nozzle contributes to the change in the thrust vector. Therefore, it is demonstrated that the deflections of both the dynamic momentum flux and the electron-diamagnetic-induced Lorentz force play an important role in the thrust vector control by the magnetic steering.


MAUSAM ◽  
2021 ◽  
Vol 52 (2) ◽  
pp. 325-332
Author(s):  
SOMENATH DUTTA

An attempt has been made to parameterize the wave momentum flux wave energy flux and pressure drag associated with mountain wave across the Mumbai-Pune section of western ghat mountain in India.   A two dimensional frictionless, adiabatic, hydrostatic, Boussinesq flow with constant basic flow (U) and constant Brunt Vaisala frequency (N) across a mesoscale mountain with infinite extension in the Cross wind direction, has been considered here.   It has been shown that for a vertically propagating (or decaying) waves the wave momentum flux is downward (or upward) and the wave energy flux is upward (or downward). It has also been shown that both the fluxes are independent of the half width of the bell shaped part of the western ghat. The analytically derived formula have been used to compute the pressure drag and to find out the vertical profile of wave momentum flux and wave energy flux for different cases of mountain wave across western ghat, as reported by earlier workers.


2021 ◽  
Author(s):  
Torsten Seelig ◽  
Felix Müller ◽  
Matthias Tesche

<p>Die Wolkenverfolgung ist die einzige Möglichkeit zur Beobachtung der zeitlichen Entwicklung von Wolken und zur Quantifizierung der Veränderung ihrer physikalischen Eigenschaften während ihrer Lebensdauer (Seelig et al., 2021). Der Schlüssel dazu sind zeitaufgelöste Messungen von Instrumenten an Bord geostationärer Satelliten. Experimente mit atmosphärenähnlicher Konfiguration treiben die Entwicklung von Messmethoden und Alghoritmen unter Laborbedingungen voran. Heutzutage ist es z.B. möglich zweidimensionale, zeitlich und räumlich hochaufgelöste Geschwindigkeitsfelder auf Basis der Verschiebung kleinster Partikel zu messen (Seelig and Harlander, 2015; Seelig et al., 2018). Die Methodik der Partikelgeschwindigkeitsmessung dient als Anfangsbedingung zum Verfolgen dieser Partikel und kann auf troposphärische Wolken angewendet werden. Diese Präsentation stellt die Analogie von Experiment zur Realität vor, beschreibt das Verfahren der Partikelgeschwindigkeitsmessung und die Anwendung auf Daten geostationärer Satelliten.</p> <p><strong>Literatur:</strong></p> <p>Seelig, T., Deneke, H., Quaas, J., and Tesche, M.: Life cycle of shallow marine cumulus clouds from geostationary satellite observations, J. Geophys. Res.: Atmos., 126(22), e2021JD035577, https://doi.org/10.1029/2021JD035577, 2021.</p> <p>Seelig, T., Harlander, U., and Gellert, M.: Experimental investigation of stratorotational instability using a thermally stratified system: instability, waves and associated momentum flux, Geophys. Astrophys. Fluid Dyn., 112, 239-264, https://doi.org/10.1080/03091929.2018.1488971, 2018.</p> <p>Seelig, T. and Harlander, U.: Can zonally symmetric inertial waves drive an oscillating zonal mean flow?, Geophys. Astrophys. Fluid Dyn., 109, 541-566, https://doi.org/10.1080/03091929.2015.1094064, 2015.</p>


MAUSAM ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 75-86
Author(s):  
HAMZA V ◽  
C. A. BABU

Features of sea and land breezes, surface fluxes and drag coefficient over Cochin are studied using more than 300 daily observations of air temperature, wind speed and direction data. The duration and intensity of sea breeze circulation vary with the rain or cloud as it reduces the differential heating. Onset of sea breeze is early in summer season for the near equatorial station compared to winter season. Cessation is almost same for all seasons and is around 1900 hours. The sea breeze circulation is almost westerly and land breeze circulation is almost easterly in all the seasons. It is found that in most of the cases, the temperature and wind speed decreases at the time of onset of sea breeze and turning of wind direction with height becomes counter clockwise (backing) during the transition period from land breeze to sea breeze. In all seasons, the momentum flux is directed downward. High values of momentum flux were found during the presence of sea breeze in pre-monsoon season. Average sensible heat flux is directed upward during the entire period and during nighttime it is almost zero in the winter and monsoon seasons. The intensity of momentum flux decreases during onset and cessation of sea breeze for all the cases. The cold air advection associated with the sea breeze results in the decrease of sensible heat flux at the time of onset of sea breeze. Averaged surface momentum and sensible flux patterns resemble closely to the instantaneous pattern for all the seasons. Generally, sea breeze is stronger than land breeze in all the seasons. Accordingly, the drag coefficient power relationship with wind is different for sea breeze and land breeze circulations.Key words – Sea breeze circulation, Monsoon boundary layer, Surface fluxes, Drag coefficient, Diurnal variation.


2021 ◽  
Vol 9 (11) ◽  
pp. 1248
Author(s):  
Jian Shi ◽  
Zhihao Feng ◽  
Yuan Sun ◽  
Xueyan Zhang ◽  
Wenjing Zhang ◽  
...  

The sea surface drag coefficient plays an important role in momentum transmission between the atmosphere and the ocean, which is affected by ocean waves. The total air–sea momentum flux consists of effective momentum flux and sea spray momentum flux. Sea spray momentum flux involves sea surface drag, which is largely affected by the ocean wave state. Under strong winds, the sea surface drag coefficient (CD) does not increase linearly with the increasing wind speed, namely, the increase of CD is inhibited by strong winds. In this study, a sea surface drag coefficient is constructed that can be applied to the calculation of the air–sea momentum flux under high wind speed. The sea surface drag coefficient also considers the influence of wave state and sea spray droplets generated by wave breaking. Specially, the wave-dependent sea spray generation function is employed to calculate sea spray momentum flux. This facilitates the analysis not only on the sensitivity of the sea spray momentum flux to wave age, but also on the effect of wave state on the effective CD (CD, eff) under strong winds. Our results indicate that wave age plays an important role in determining CD. When the wave age is >0.4, CD decreases with the wave age. However, when the wave age is ≤0.4, CD increases with the wave age at low and moderate wind speeds but tends to decrease with the wave age at high wind speeds.


2021 ◽  
pp. 1-46
Author(s):  
Tomoya Shimura ◽  
Nobuhito Mori ◽  
Daisuke Urano ◽  
Tetsuya Takemi ◽  
Ryo Mizuta

AbstractUnderstanding the systematic characteristics of tropical cyclones (TCs) represented in the Global Climate Model (GCM) is important for reliable climate change impact assessments. The atmospheric GCM (AGCM) and ocean wave models were coupled by incorporating the wave-dependent momentum flux. Systematic impacts of wave-dependent momentum flux on TC characteristics were estimated by analyzing 100 historical TCs that occurred in the western North Pacific. Wave-dependent momentum flux parameterization considering wind and wave direction misalignment was used for assessing the wave-atmosphere interaction. The larger the wave age and misalignment, the larger is the drag coefficient. The drag coefficient at the left-hand side of the TC was enhanced by the wave condition. It was found that the wave-dependent momentum flux did not have any impact on peak TC intensity. On the other hand, the wave-dependent momentum flux showed a significant impact on TC development during the early development stage. Although systematic differences in TC intensity at most developed stages were not detected, systematic differences in TC tracks between experiments were observed. The TC tracks of wave-coupled AGCM tend to pass in a relatively eastward direction compared to those from the uncoupled AGCM. This is because the wave-dependent momentum flux in the coupled AGCM altered the environmental steering flow and the smaller beta effect of smaller TC at the early developing stage. Systematic differences in TC tracks have significant impacts on climate change assessments, such as extreme sea level changes in coastal regions due to climate change.


Author(s):  
Muhammad Numan Atique ◽  
S. Imran ◽  
Luqman Razzaq ◽  
M.A. Mujtaba ◽  
Saad Nawaz ◽  
...  
Keyword(s):  

Author(s):  
L. Mahrt ◽  
Erik Nilsson ◽  
Anna Rutgersson ◽  
Heidi Pettersson

AbstractMotivated by previous studies, we examine the underestimation of the sea-surface stress due to the stress divergence between the surface and the atmospheric observational level. We analyze flux measurements collected over a six-year period at a coastal tower in the Baltic Sea encompassing a wide range of fetch values. Results are posed in terms of the vertical divergence of the stress scaled by the stress at the lowest observational level. The magnitude of this relative stress divergence increases with increasing stability and decreases with increasing instability, possibly partly due to the impact of stability on the boundary-layer depth. The magnitude of the relative stress divergence increases modestly with decreasing wave age. The divergence of the heat flux is not well correlated with the divergence of the momentum flux evidently due to the greater influence of advection on the temperature. Needed improvement of the conceptual framework and needed additional measurements are noted.


Sign in / Sign up

Export Citation Format

Share Document