Analytical solutions of linear finite- and small-strain one-dimensional consolidation

Author(s):  
P. H. Morris
1991 ◽  
Vol 56 (2) ◽  
pp. 334-343
Author(s):  
Ondřej Wein

Analytical solutions are given to a class of unsteady one-dimensional convective-diffusion problems assuming power-law velocity profiles close to the transport-active surface.


1984 ◽  
Vol 106 (3) ◽  
pp. 264-270 ◽  
Author(s):  
Han C. Wu ◽  
C. C. Yang

Two sets of experiments with and without strain cycling have been carried out to test the validity of an equation derived from the improved theory of endochronic plasticity. It has been found that for strain path not involving cyclic straining the agreement between theory and experiment is quite good. In the test with strain cycling, the agreement is not good for small strain amplitudes of cycling but the discrepancy diminishes with the increasing amplitude of the strain cycling.


Géotechnique ◽  
2021 ◽  
pp. 1-41
Author(s):  
Zhouxiang Ding ◽  
Wenjun Zhang ◽  
Zhaohui Yang ◽  
Zhe Wang ◽  
Xiuli Du ◽  
...  

Author(s):  
A. G. Mackie

SynopsisAn investigation is made of the motion of a one-dimensional finite gas cloud which is initially at rest and is allowed to expand into a vacuum in both directions. The density of the gas at rest is assumed to rise steadily and continuously from zero at the boundaries to a maximum in the interior of the cloud.If the subsequent motion is continuous, it is completely specified by analytical solutions in seven different regions of the x-t plane joined together along characteristics. The motion of one of the boundaries is discussed, and conditions found for it to have (i) an initial stationary period or (ii) a final constant velocity of advance into the vacuum. The gas streams in both directions from a dividing point at zero velocity. This point ultimately tends to the mid-point of the initial distribution.The possible breakdown of the continuity of the motion is discussed, and a condition on the initial density distribution found for shock-free flow to be maintained.


Sign in / Sign up

Export Citation Format

Share Document