density distribution
Recently Published Documents


TOTAL DOCUMENTS

4241
(FIVE YEARS 484)

H-INDEX

83
(FIVE YEARS 8)

Author(s):  
Nurfitri Abdul Gafur ◽  
Masayuki Sakakibara ◽  
Satoru Komatsu ◽  
Sakae Sano ◽  
Koichiro Sera

In this paper, we report ecological and environmental investigations on Pteris vittata in the As–Pb–Hg-polluted Bone River area, Gorontalo Province, Indonesia. The density distribution of P. vittata decreases from around the artisanal and small-scale gold mining (ASGM) site to the lower reaches of the Bone River, and it is rarely found near Gorontalo City. The maximum concentrations of As, Hg, and Pb recorded in the soil samples were 401, 36, and 159 mg kg−1, respectively, with their maximum concentrations in P. vittata recorded as 17,700, 5.2, and 39 mg kg−1, respectively. Around the ASGM sites, the concentrations of As, Pb, and Hg in P. vittata were highest in the study area. These data suggest that P. vittata, a hyperaccumulator of As, may be useful as a bioindicator for assessing environmental pollution by Pb and Hg.


2022 ◽  
Vol 924 (2) ◽  
pp. 86
Author(s):  
Zhijie Qu ◽  
Ryan Lindley ◽  
Joel N. Bregman

Abstract We compose a 265-sight-line Milky Way C iv line-shape sample using the Hubble Space Telescope/Cosmic Origins Spectrograph archive, which is complementary to the existing Si iv samples. C iv has a higher ionization potential (47–64 eV) than Si iv (33–45 eV), so it also traces warm gas, which is roughly cospatial with Si iv. The spatial density distribution and kinematics of C iv are identical to those Si iv within ≈2σ. C iv is more sensitive to the warm gas density distribution at large radii with a higher element abundance. Applying the kinematical model to the C iv sample, we find two possible solutions of the density distribution, which are distinguished by the relative extension along the disk midplane and the normal-line direction. Both solutions can reproduce the existing sample and suggest a warm gas disk mass of log M ( M ⊙ ) ≈ 8 and an upper limit of log M ( M ⊙ ) < 9.3 within 250 kpc, which is consistent with Si iv. There is a decrease in the C iv/Si iv column density ratio from the Galactic center to the outskirts by 0.2–0.3 dex, which may suggest a phase transition or different ionization mechanisms for C iv and Si iv. Also, we find that the difference between C iv and Si iv is an excellent tracer of small-scale features, and we find a typical size of 5°–10° for possible turbulence within individual clouds (≈1 kpc).


Author(s):  
Shi-Jie Yang ◽  
Xin Shen ◽  
Xin-Bing Cheng ◽  
Feng-Ni Jiang ◽  
Rui Zhang ◽  
...  

GEODYNAMICS ◽  
2021 ◽  
Vol 2(31)2021 (2(31)) ◽  
pp. 5-15
Author(s):  
Alexander. N. Marchenko ◽  
◽  
Serhii Perii ◽  
Ivan Pokotylo ◽  
Zoriana Tartachynska ◽  
...  

The basic goal of this study (as the first step) is to collect the appropriate set of the fundamental astronomic-geodetics parameters for their further use to obtain the components of the density distributions for the terrestrial and outer planets of the Solar system (in the time interval of more than 10 years). The initial data were adopted from several steps of the general way of the exploration of the Solar system by iterations through different spacecraft. The mechanical and geometrical parameters of the planets allow finding the solution of the inverse gravitational problem (as the second stage) in the case of the continued Gaussian density distribution for the Moon, terrestrial planets (Mercury, Venus, Earth, Mars) and outer planets (Jupiter, Saturn, Uranus, Neptune). This law of Gaussian density distribution or normal density was chosen as a partial solution of the Adams-Williamson equation and the best approximation of the piecewise radial profile of the Earth, including the PREM model based on independent seismic velocities. Such conclusion already obtained for the Earth’s was used as hypothetic in view of the approximation problem for other planets of the Solar system where we believing to get the density from the inverse gravitational problem in the case of the Gaussian density distribution for other planets because seismic information, in that case, is almost absent. Therefore, if we can find a stable solution for the inverse gravitational problem and corresponding continue Gaussian density distribution approximated with good quality of planet’s density distribution we come in this way to a stable determination of the gravitational potential energy of the terrestrial and giant planets. Moreover to the planet’s normal low, the gravitational potential energy, Dirichlet’s integral, and other planets’ parameters were derived. It should be noted that this study is considered time-independent to avoid possible time changes in the gravitational fields of the planets.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 223
Author(s):  
Anita M. Grześkiewicz ◽  
Maciej Kubicki

High-quality crystals of a certain polymorphic form of thiobarbituric acid containing both keto and enol tautomers in the asymmetric unit were obtained. High-resolution X-ray diffraction data up to sinθ/λ = 1.0 Å−1 were collected and subsequently successfully used for the refining of the multipolar model of electron density distribution. The use of a crystal containing both ketone and enol forms allowed a direct comparison of the topological analysis results and a closer look at the differences between these two forms. The similarities and differences between the deformation densities, electrostatic potentials, Laplacian maps and bond characteristics of the tautomers were analysed. Additionally, the spectrum of the intermolecular interactions was identified and studied from classical, relatively strong N-H···O and O-H···O hydrogen bonds through weaker N-H···S hydrogen bonds to weak interactions (for instance, C-H···O, C-H···S and N···O). The results of these studies point toward the importance of including both the geometrical features and the details of the electron density distribution in the analysis of such weak interactions.


2021 ◽  
Author(s):  
Xue-Qi Lv ◽  
Xiong-Ying Li

Abstract The melting at the magnesium/aluminum (Mg/Al) interface is an essential step during the fabrications of Mg-Al structural materials and biomaterials. We carried out molecular dynamics simulations on the melting at the Mg/Al interface in a Mg-Al-Mg nanolayer via analyzing the changes of average atomic potential energy, Lindemann index, heat capacity, atomic density distribution and radial distribution function with temperature. The melting temperatures (T m) of the nanolayer and the slabs near the interface are significantly sensitive to the heating rate (v h) over the range of v h≤4.0 K/ps. The distance (d) range in which the interface affects the melting of the slabs is predicted to be (-98.2, 89.9) Å at v h→0, if the interface is put at d=0 and Mg (Al) is located at the left (right) side of the interface. The (T m) of the Mg (Al) slab just near the interface (e.g., d=4.0 Å) is predicted to be 926.8 K (926.6 K) at v h→0, with 36.9 K (37.1 K) below 963.7 K for the nanolayer. These results highlight the importance of regional research on the melting at an interface in the nanolayers consisting of two different metals.


Author(s):  
J. ‐P. Huang ◽  
Y. ‐T. Cao ◽  
J. Cui ◽  
Y. ‐Q. Hao ◽  
X. ‐S. Wu ◽  
...  

Author(s):  
Akhilesh Yadav ◽  
A. Shukla ◽  
Sven Åberg

We have performed a systematic study for the nuclear structure of superheavy nuclei with a special emphasis on the nuclei with possible central depletion of proton and neutron density in the mass region [Formula: see text] using the Relativistic Hartree–Bogoliubov (RHB) framework. It has been observed that in the case of neutron density distribution, the occurrence of central depletion is related to the occupancy of 4s orbital and it is found to decrease with increasing occupancy of the 4s orbital. On the other hand, in the case of proton density distribution, the central density depletion is mainly due to the lowering of weakly bound p-orbital states close to the continuum as it is energetically favored to lower the Coulomb repulsion in the case of superheavy nuclei. Also, occupation probability of the lower angular momentum states (p-orbitals) lying near the Fermi level is strongly suppressed due to the weak centrifugal barrier and strong Coulomb repulsion in comparison to large angular momentum states (contributing to surface region mainly), resulting in central density depletion. Among the considered cases in the present work, the maximum depletion is observed for [Formula: see text] and for [Formula: see text]Og under spherically symmetric and axially deformed cases, respectively.


Sign in / Sign up

Export Citation Format

Share Document