Power iteration and inverse power iteration for eigenvalue complementarity problem

2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Fatemeh Abdi ◽  
Fatemeh Shakeri

2019 ◽  
Vol 353 ◽  
pp. 95-113 ◽  
Author(s):  
Yi-Shuai Niu ◽  
Joaquim Júdice ◽  
Hoai An Le Thi ◽  
Dinh Tao Pham


2009 ◽  
Vol 24 (4-5) ◽  
pp. 549-568 ◽  
Author(s):  
Joaquim J. Júdice ◽  
Hanif D. Sherali ◽  
Isabel M. Ribeiro ◽  
Silvério S. Rosa


2007 ◽  
Vol 37 (2) ◽  
pp. 139-156 ◽  
Author(s):  
Joaquim J. Júdice ◽  
Hanif D. Sherali ◽  
Isabel M. Ribeiro


2016 ◽  
Vol 19 (2) ◽  
pp. 805-812
Author(s):  
Yue Wei ◽  
Hao Fang ◽  
Jie Chen ◽  
Bin Xin


2015 ◽  
Vol 271 ◽  
pp. 594-608 ◽  
Author(s):  
Carmo P. Brás ◽  
Masao Fukushima ◽  
Alfredo N. Iusem ◽  
Joaquim J. Júdice


2015 ◽  
Vol 72 (3) ◽  
pp. 721-747 ◽  
Author(s):  
Alfredo N. Iusem ◽  
Joaquim J. Júdice ◽  
Valentina Sessa ◽  
Hanif D. Sherali


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Ying-xiao Wang ◽  
Shou-qiang Du

With the development of computer science, computational electromagnetics have also been widely used. Electromagnetic phenomena are closely related to eigenvalue problems. On the other hand, in order to solve the uncertainty of input data, the stochastic eigenvalue complementarity problem, which is a general formulation for the eigenvalue complementarity problem, has aroused interest in research. So, in this paper, we propose a new kind of stochastic eigenvalue complementarity problem. We reformulate the given stochastic eigenvalue complementarity problem as a system of nonsmooth equations with nonnegative constraints. Then, a projected smoothing Newton method is presented to solve it. The global and local convergence properties of the given method for solving the proposed stochastic eigenvalue complementarity problem are also given. Finally, the related numerical results show that the proposed method is efficient.



2013 ◽  
Vol 29 (4) ◽  
pp. 751-770 ◽  
Author(s):  
Luís M. Fernandes ◽  
Joaquim J. Júdice ◽  
Masao Fukushima ◽  
Alfredo Iusem


2013 ◽  
Vol 28 (4) ◽  
pp. 812-829 ◽  
Author(s):  
Y. S. Niu ◽  
T. Pham Dinh ◽  
H. A. Le Thi ◽  
J. J. Judice


Sign in / Sign up

Export Citation Format

Share Document