power iteration
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)





2021 ◽  
pp. 107118
Author(s):  
Bo Liu ◽  
Yong Liu ◽  
Huiyan Zhang ◽  
Yonghui Xu ◽  
Can Tang ◽  
...  


2021 ◽  
Vol 2 (2) ◽  
pp. 132-151
Author(s):  
Vito Vitali ◽  
Florent Chevallier ◽  
Alexis Jinaphanh ◽  
Andrea Zoia ◽  
Patrick Blaise

Modal expansions based on k-eigenvalues and α-eigenvalues are commonly used in order to investigate the reactor behaviour, each with a distinct point of view: the former is related to fission generations, whereas the latter is related to time. Well-known Monte Carlo methods exist to compute the direct k or α fundamental eigenmodes, based on variants of the power iteration. The possibility of computing adjoint eigenfunctions in continuous-energy transport has been recently implemented and tested in the development version of TRIPOLI-4®, using a modified version of the Iterated Fission Probability (IFP) method for the adjoint α calculation. In this work we present a preliminary comparison of direct and adjoint k and α eigenmodes by Monte Carlo methods, for small deviations from criticality. When the reactor is exactly critical, i.e., for k0 = 1 or equivalently α0 = 0, the fundamental modes of both eigenfunction bases coincide, as expected on physical grounds. However, for non-critical systems the fundamental k and α eigenmodes show significant discrepancies.



Author(s):  
Lewis Liu ◽  
Songtao Lu ◽  
Tuo Zhao ◽  
Zhaoran Wang


2021 ◽  
Vol 247 ◽  
pp. 03001
Author(s):  
Ansar Calloo ◽  
Romain Le Tellier ◽  
David Couyras

This work focuses on the k-eigenvalue problem of the neutron transport equation. The variables of interest are the largest eigenvalue (keff) and the corresponding eigenmode is called the fundamental mode. Mathematically, this problem is usually solved using the power iteration method. However, the convergence of this algorithm can be very slow, especially if the dominance ratio is high as is the case in some reactor physics applications. Thus, the power iteration method has to be accelerated in some ways to improve its convergence. One such acceleration is the Chebyshev acceleration method which has been widely applied to legacy codes. In recent years, nonlinear methods have been applied to solve the k-eigenvalue problem. Nevertheless, they are often compared to the unaccelerated power iteration. Hence, the goal of this paper is to apply the Anderson acceleration to the power iteration, and compare its performance to the Chebyshev acceleration.



2021 ◽  
Vol 247 ◽  
pp. 02002
Author(s):  
Minh-Hieu Do ◽  
Patrick Ciarlet ◽  
François Madiot

The neutron transport equation can be used to model the physics of the nuclear reactor core. Its solution depends on several variables and requires a lot of high precision computations. One can simplify this model to obtain the SPN equation for a generalized eigenvalue problem. In order to solve this eigenvalue problem, we usually use the inverse power iteration by solving a source problem at each iteration. Classically, this problem can be recast in a mixed variational form, and then discretized by using the Raviart-Thomas-Nédélec Finite Element. In this article, we focus on the steady-state diffusion equation with heterogeneous coefficients discretized on Cartesian meshes. In this situation, it is expected that the solution has low regularity. Therefore, it is necessary to refine at the singular regions to get better accuracy. The Adaptive Mesh Refinement (AMR) is one of the most effective ways to do that and to improve the computational time. The main ingredient for the refinement techniques is the use of a posteriori error estimates, which gives a rigorous upper bound of the error between the exact and numerical solution. This indicator allows to refine the mesh in the regions where the error is large. In this work, some mesh refinement strategies are proposed on the Cartesian mesh for the source problem. Moreover, we numerically investigate an algorithm which combines the AMR process with the inverse power iteration to handle the generalized eigenvalue problem.



2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Tao Wu ◽  
Pengtao Zhang ◽  
Yiwen Li ◽  
Yangjun Gao ◽  
Chaoqi Fu ◽  
...  

Aiming at two-dimensional (2D) coherent distributed (CD) sources, this paper has proposed a direction of arrival (DOA) tracking algorithm based on signal subspace updating under the uniform rectangular array (URA). First, based on the hypothesis of small angular spreads of distributed sources, the rotating invariant relations of the signal subspace of the receive vector of URA are derived. An ESPRIT-like method is constructed for DOA estimation using two adjacent parallel linear arrays of URA. Through the synthesis of estimation by multiple groups of parallel linear arrays within URA arrays, the DOA estimation method for 2D CD sources based on URA is obtained. Then, fast approximated power iteration (FAPI) subspace tracking algorithm is used to update the signal subspace. In this way, DOA tracking of 2D CD sources can be realized by DOA estimation through signal subspace updating. This algorithm has a low computational complexity and good real-time tracking performance. In addition, the algorithm can track multiple CD sources without knowing the angular signal distribution functions, which is robust to model errors.



Sign in / Sign up

Export Citation Format

Share Document