Stress analysis in continuous media with an edge dislocation by finite element dislocation model

2002 ◽  
Vol 54 (5) ◽  
pp. 671-683 ◽  
Author(s):  
Kazuaki Sasaki ◽  
Michiya Kishida ◽  
Yutaka Ekida



1996 ◽  
Vol 24 (4) ◽  
pp. 349-366 ◽  
Author(s):  
T-M. Wang ◽  
I. M. Daniel ◽  
K. Huang

Abstract An experimental stress-strain analysis by means of the Moiré method was conducted in the area of the tread and belt regions of tire sections. A special loading fixture was designed to support the tire section and load it in a manner simulating service loading and allowing for Moiré measurements. The specimen was loaded by imposing a uniform fixed deflection on the tread surface and increasing the internal pressure in steps. Moiré fringe patterns were recorded and analyzed to obtain strain components at various locations of interest. Maximum strains in the range of 1–7% were determined for an effective inflation pressure of 690 kPa (100 psi). These results were in substantial agreement with results obtained by a finite element stress analysis.



Author(s):  
Mohamad A Arsah ◽  
◽  
Syed M A Syed Mohd Yusoff Sobbry ◽  
Tengku N A Tuan Kamaruddin ◽  
Azmi Osman ◽  
...  




Author(s):  
Xiandong Zhou ◽  
Christoph Reimuth ◽  
Peter Stein ◽  
Bai-Xiang Xu

AbstractThis work presents a regularized eigenstrain formulation around the slip plane of dislocations and the resultant non-singular solutions for various dislocation configurations. Moreover, we derive the generalized Eshelby stress tensor of the configurational force theory in the context of the proposed dislocation model. Based on the non-singular finite element solutions and the generalized configurational force formulation, we calculate the driving force on dislocations of various configurations, including single edge/screw dislocation, dislocation loop, interaction between a vacancy dislocation loop and an edge dislocation, as well as a dislocation cluster. The non-singular solutions and the driving force results are well benchmarked for different cases. The proposed formulation and the numerical scheme can be applied to any general dislocation configuration with complex geometry and loading conditions.



Sign in / Sign up

Export Citation Format

Share Document