Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method

2007 ◽  
Vol 24 (4) ◽  
pp. 1115-1126 ◽  
Author(s):  
Hossein Jafari ◽  
Mehdi Dehghan ◽  
Khosro Sayevand
2021 ◽  
Vol 5 (4) ◽  
pp. 274
Author(s):  
Jinfeng Wang ◽  
Baoli Yin ◽  
Yang Liu ◽  
Hong Li ◽  
Zhichao Fang

In this article, a new mixed finite element (MFE) algorithm is presented and developed to find the numerical solution of a two-dimensional nonlinear fourth-order Riemann–Liouville fractional diffusion-wave equation. By introducing two auxiliary variables and using a particular technique, a new coupled system with three equations is constructed. Compared to the previous space–time high-order model, the derived system is a lower coupled equation with lower time derivatives and second-order space derivatives, which can be approximated by using many time discrete schemes. Here, the second-order Crank–Nicolson scheme with the modified L1-formula is used to approximate the time direction, while the space direction is approximated by the new MFE method. Analyses of the stability and optimal L2 error estimates are performed and the feasibility is validated by the calculated data.


Sign in / Sign up

Export Citation Format

Share Document