Protein domain identification and improved sequence similarity searching using PSI-BLAST

2002 ◽  
Vol 48 (4) ◽  
pp. 672-681 ◽  
Author(s):  
Richard A. George ◽  
Jaap Heringa
2019 ◽  
Vol 14 (7) ◽  
pp. 628-639 ◽  
Author(s):  
Bizhi Wu ◽  
Hangxiao Zhang ◽  
Limei Lin ◽  
Huiyuan Wang ◽  
Yubang Gao ◽  
...  

Background: The BLAST (Basic Local Alignment Search Tool) algorithm has been widely used for sequence similarity searching. Analogously, the public phenotype images must be efficiently retrieved using biological images as queries and identify the phenotype with high similarity. Due to the accumulation of genotype-phenotype-mapping data, a system of searching for similar phenotypes is not available due to the bottleneck of image processing. Objective: In this study, we focus on the identification of similar query phenotypic images by searching the biological phenotype database, including information about loss-of-function and gain-of-function. Methods: We propose a deep convolutional autoencoder architecture to segment the biological phenotypic images and develop a phenotype retrieval system to enable a better understanding of genotype–phenotype correlation. Results: This study shows how deep convolutional autoencoder architecture can be trained on images from biological phenotypes to achieve state-of-the-art performance in a phenotypic images retrieval system. Conclusion: Taken together, the phenotype analysis system can provide further information on the correlation between genotype and phenotype. Additionally, it is obvious that the neural network model of image segmentation and the phenotype retrieval system is equally suitable for any species, which has enough phenotype images to train the neural network.


2016 ◽  
Vol 45 (7) ◽  
pp. e46-e46 ◽  
Author(s):  
William R. Pearson ◽  
Weizhong Li ◽  
Rodrigo Lopez

2011 ◽  
Vol 4 ◽  
pp. 303-305
Author(s):  
Wojciech M. Karlowski

2018 ◽  
Vol 95 (1) ◽  
pp. e71 ◽  
Author(s):  
Gang Hu ◽  
Lukasz Kurgan

Genome ◽  
2009 ◽  
Vol 52 (11) ◽  
pp. 904-911 ◽  
Author(s):  
M. Buti ◽  
T. Giordani ◽  
M. Vukich ◽  
L. Gentzbittel ◽  
L. Pistelli ◽  
...  

In this paper we report on the isolation and characterization, for the first time, of a complete 6511 bp retrotransposon of sunflower. Considering its protein domain order and sequence similarity to other copia elements of dicotyledons, this retrotransposon was assigned to the copia retrotransposon superfamily and named HACRE1 ( Helianthus annuus copia-like retroelement 1). HACRE1 carries 5′ and 3′ long terminal repeats (LTRs) flanking an internal region of 4661 bp. The LTRs are identical in their sequence except for two deletions of 7 and 5 nucleotides in the 5′ LTR. Based on the sequence identity of the LTRs, HACRE1 was estimated to have inserted within the last ∼84 000 years. The isolated sequence contains a complete open reading frame with only one complete reading frame. The absence of nonsense mutations agrees with the very high sequence identity between LTRs, confirming that HACRE1 insertion is recent. The haploid genome of sunflower (inbred line HCM) contains about 160 copies of HACRE1. This retrotransposon is expressed in leaflets from 7-day-old plantlets under different light conditions, probably in relation to the occurrence of many putative light-related regulatory cis-elements in the LTRs. However, sequenced cDNAs show less variability than HACRE1 genomic sequences, indicating that only a subset of this family is expressed under these conditions.


1999 ◽  
Vol 46 (1) ◽  
pp. 19.3.1-19.3.29 ◽  
Author(s):  
Tyra G. Wolfsberg ◽  
Thomas L. Madden

PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39475 ◽  
Author(s):  
Ming Fan ◽  
Ka-Chun Wong ◽  
Taewoo Ryu ◽  
Timothy Ravasi ◽  
Xin Gao

Sign in / Sign up

Export Citation Format

Share Document