Thermal characterization of multi‐layer graphene heat spreader by Pt/Cu/Ti micro‐coil

Author(s):  
Mohd Faizol Abdullah ◽  
Nur Julia Nazim Bulya Nazim ◽  
Nurhidaya Soriadi ◽  
Siti Aishah Mohamad Badaruddin ◽  
Mohd Rofei Mat Hussin ◽  
...  
2005 ◽  
Vol 128 (2) ◽  
pp. 125-129
Author(s):  
Sadegh M. Sadeghipour ◽  
Mehdi Asheghi

Lack of an efficient thermal management strategy and system can often lead to overall system failure in advanced microprocessors. This can be avoided by utilization of the high thermal conductivity materials, as heat spreader/sink, in compact packaging systems. The diamondlike dielectric materials, such as diamond, silicon nitride (Si3N4), aluminum nitride (AlN), silicon carbide (SiC), etc., are the likely choices. However, thermal characterization of such high thermal conductivity materials has proven to be challenging due to variations in the fabrication processes and, therefore, their microstructures as well as the practical difficulties in measuring small temperature gradients during the characterization. In this paper, we will report on a novel film on substrate technique that can be used conveniently for repeated measurements of the lateral thermal conductivity of the high thermal conductivity film layers, with thicknesses between 100 and 500μm.


1999 ◽  
Vol 6 (1) ◽  
pp. 101-108 ◽  
Author(s):  
E. Delacre ◽  
D. Defer ◽  
E. Antczak ◽  
B. Duthoit

2005 ◽  
Vol 125 ◽  
pp. 177-180
Author(s):  
T. Lopez ◽  
M. Picquart ◽  
G. Aguirre ◽  
Y. Freile ◽  
D. H. Aguilar ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


Sign in / Sign up

Export Citation Format

Share Document