chemical energy
Recently Published Documents


TOTAL DOCUMENTS

663
(FIVE YEARS 182)

H-INDEX

50
(FIVE YEARS 10)

Author(s):  
Ravi Kumar Kunchala ◽  
Pushpendra . ◽  
Rimple Kalia ◽  
Sanyasinaidu Boddu

Artificial photosynthesis is a promising method that directly transforms solar energy into chemical energy. To achieve artificial photosynthesis, efficient water oxidation catalysts (WOCs) are essential. In nature, the manganese-oxo-calcium cluster...


Author(s):  
Deepa Thakur ◽  
Moolchand Sharma ◽  
Viswanath Balakrishnan ◽  
Rahul Vaish

Piezocatalysis of semiconductors is an arising technology that transforms mechanical stress into chemical energy to enhance reaction rate with piezo-generated free charge carriers. In the present work, CVD-grown few-layer WS2...


2022 ◽  
Vol 2155 (1) ◽  
pp. 012014
Author(s):  
A V Gurskaya ◽  
V I Chepurnov ◽  
M V Dolgopolov ◽  
G V Puzyrnaya ◽  
I A Petenko

Abstract The authors consider their own CVD technology for the SiC growing on a Si substrate in order to create a beta converter. Since the beta converter contains a heavy C-14 atom, the finished beta converter works as an ”inner sun”, and the structure has specific mark * in the name: SiC*/Si. Authors focus on the problems of the theoretical description of: 1) the growth of the SiC*/Si film (with C-14 atoms inside) and the position of the p-n junction in the doping process; 2) method of a placement radioisotopes into a semiconductor material; 3) physical properties of radioisotopes; 4) defects formation; 5) generation of secondary electrons in the region of the p-n junction.


2022 ◽  
Author(s):  
Maria Quant ◽  
Andreas Erbs Hillers-Bendtsen ◽  
Shima Ghasemi ◽  
Mate Erdelyi ◽  
Zhihang Wang ◽  
...  

Molecular solar-thermal energy storage (MOST) systems are based on photoswitches that reversibly convert solar energy into chemical energy. In this context, bicyclooctadienes (BOD) undergo a photoinduced transformation to the corresponding...


2021 ◽  
Author(s):  
Mathias Centola ◽  
Erik Poppleton ◽  
Martin Centola ◽  
Julian Valero ◽  
Petr Sulc ◽  
...  

Molecular engineering seeks to create functional entities for the modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most molecular motors are driven by Brownian motion, but the generated forces are scattered and insufficient for efficient transfer to passive second-tier components, which is why nanoscale driver-follower systems have not been realized. Here, we describe bottom-up construction of a DNA-nanomachine that engages in an active, autonomous and rhythmical pulsing motion of two rigid DNA-origami arms, driven by chemical energy. We show the straightforward coupling of the active nanomachine to a passive follower unit, to which it then transmits its own motion, thus constituting a genuine driver-follower pair. Our work introduces a versatile fuel-consuming nanomachine that can be coupled with passive modules in nanoassemblies, the function of which depends on downstream sequences of motion.


2021 ◽  
Author(s):  
Xueyun Xie ◽  
HaiPing Yu ◽  
Yang Zhong

Abstract Electric-pulse triggered energetic materials forming (ETEF) is a high-speed manufacturing process, which utilizes the chemical energy released by energetic materials (EMs) triggered by underwater wire discharge to plastically shape metals. The understanding of ETEF is not comprehensive, especially in the research on the discharge characteristics of energetic materials triggered by metal wires and the deformation process of metal sheets. In this paper, the above two problems were studied by means of experiment and numerical simulation. For the pulse discharge characteristics, the peak values of voltage and current were reduced during the triggering process of energetic materials. The triggering energy consumption of energetic materials was quantified to be about 200J. The matching parameters of different capacitor-voltage devices had no effect on triggering the energy release of energetic materials, so the electric pulse generator only played a triggering role on energetic materials. Compared with the quasi-static specimen with the same bulging height, the maximum major strain and thinning rate of the bulged specimen under ETEF condition were significantly reduced, and the deformation uniformity and strain distribution of the specimen were improved. The simulation results showed that the addition of energetic materials significantly improved the plastic strain energy of the blank. The deformation of the blank in ETEF can be divided into two stages: the initial chemical energy action stage and the inertia action stage. The bulging height of sheet metal increased by nearly 301% in inertia action stage, accounting for 80% of the total deformation time, and the effective plastic strain distribution was more uniform.


Energy ◽  
2021 ◽  
pp. 122857
Author(s):  
Bosheng Su ◽  
Jingyuan Ma ◽  
Xiaodong Zhang ◽  
Hui Li ◽  
Hongzhou He ◽  
...  

Author(s):  
Omid Amiri ◽  
Arazw Abdalrahman ◽  
Govand Jangi ◽  
Haval Aziz Ahmed ◽  
Safin Hassan Hussein ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1191
Author(s):  
Klaus Schmidt-Rohr

The energetics of photosynthesis in plants have been re-analyzed in a framework that represents the relatively high energy of O2 correctly. Starting with the photon energy exciting P680 and “loosening an electron”, the energy transfer and electron transport are represented in a comprehensive, self-explanatory sequence of redox energy transfer and release diagrams. The resulting expanded Z-scheme explicitly shows charge separation as well as important high-energy species such as O2, TyrZ˙, and P680+˙, whose energies are not apparent in the classical Z-scheme of photosynthesis. Crucially, the energetics of the three important forms of P680 and of P700 are clarified. The relative free energies of oxidized and reduced species are shown explicitly in kJ/mol, not encrypted in volts. Of the chemical energy produced in photosynthesis, more is stored in O2 than in glucose. The expanded Z-scheme introduced here provides explanatory power lacking in the classical scheme. It shows that P680* is energetically boosted to P680+˙ by the favorable electron affinity of pheophytin and that Photosystem I (PSI) has insufficient energy to split H2O and produce O2 because P700* is too easily ionized. It also avoids the Z-scheme’s bewildering implication, according to the “electron waterfall” concept, that H2O gives off electrons that spontaneously flow to chlorophyll while releasing energy. The new analysis explains convincingly why plants need two different photosystems in tandem: (i) PSII mostly extracts hydrogen from H2O, producing PQH2 (plastoquinol), and generates the energetically expensive product O2; this step provides little energy directly to the plant; (ii) PSI produces chemical energy for the organism, by pumping protons against a concentration gradient and producing less reluctant hydrogen donors. It also documents that electron transport and energy transfer occur in opposite directions and do not involve redox voltages. The analysis makes it clear that the high-energy species in photosynthesis are unstable, electron-deficient species such as P680+˙ and TyrZ˙, not putative high-energy electrons.


Sign in / Sign up

Export Citation Format

Share Document