A density-matrix formulation of the hartree-fock-bogoliubov equations for space-dependent superconductivity

2009 ◽  
Vol 7 (S7) ◽  
pp. 479-489 ◽  
Author(s):  
William L. Clinton
Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 470
Author(s):  
Valentin Allard ◽  
Nicolas Chamel

Temperature and velocity-dependent 1S0 pairing gaps, chemical potentials and entrainment matrix in dense homogeneous neutron–proton superfluid mixtures constituting the outer core of neutron stars, are determined fully self-consistently by solving numerically the time-dependent Hartree–Fock–Bogoliubov equations over the whole range of temperatures and flow velocities for which superfluidity can exist. Calculations have been made for npeμ in beta-equilibrium using the Brussels–Montreal functional BSk24. The accuracy of various approximations is assessed and the physical meaning of the different velocities and momentum densities appearing in the theory is clarified. Together with the unified equation of state published earlier, the present results provide consistent microscopic inputs for modeling superfluid neutron-star cores.


2018 ◽  
Vol 71 (4) ◽  
pp. 295 ◽  
Author(s):  
Dylan Jayatilaka ◽  
Kunal K. Jha ◽  
Parthapratim Munshi

Formulae for the static electronic polarizability and hyperpolarizability are derived in terms of moments of the ground-state electron density matrix by applying the Unsöld approximation and a generalization of the Fermi-Amaldi approximation. The latter formula for the hyperpolarizability appears to be new. The formulae manifestly transform correctly under rotations, and they are observed to be essentially cumulant expressions. Consequently, they are additive over different regions. The properties of the formula are discussed in relation to others that have been proposed in order to clarify inconsistencies. The formulae are then tested against coupled-perturbed Hartree-Fock results for a set of 40 donor-π-acceptor systems. For the polarizability, the correlation is reasonable; therefore, electron density matrix moments from theory or experiment may be used to predict polarizabilities. By constrast, the results for the hyperpolarizabilities are poor, not even within one or two orders of magnitude. The formula for the two- and three-particle density matrices obtained as a side result in this work may be interesting for density functional theories.


1976 ◽  
Vol 65 (10) ◽  
pp. 4234-4238 ◽  
Author(s):  
Leon Cohen ◽  
C. Frishberg

2000 ◽  
Vol 665 (1-2) ◽  
pp. 71-91 ◽  
Author(s):  
Javid A. Sheikh ◽  
Peter Ring

Sign in / Sign up

Export Citation Format

Share Document