equation of state
Recently Published Documents


TOTAL DOCUMENTS

11838
(FIVE YEARS 1416)

H-INDEX

195
(FIVE YEARS 17)

Author(s):  
Luca Baiotti

AbstractI review the current global status of research on gravitational waves emitted from mergers of binary neutron star systems, focusing on general-relativistic simulations and their use to interpret data from the gravitational-wave detectors, especially in relation to the equation of state of compact stars.


Author(s):  
Marco Pereira

HU is the Hypergeometrical Universe Theory (HU)[1-8], proposed in 2006, where the Universe is a Lightspeed Expanding Hyperspherical Hypersurface and Gravitation is an absolute-velocity-dependent, epoch-dependent force. Here we introduce the Big Pop Cosmogenesis and show our calculations associated with the Equation of State of the Universe. This article is the first in a series of articles[9-22] supporting the paradigm shift.


2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Luiz Eduardo Czelusniak ◽  
Vinícius Pessoa Mapelli ◽  
Alexander J. Wagner ◽  
Luben Cabezas-Gómez

2022 ◽  
Vol 43 (3) ◽  
Author(s):  
Monika Thol ◽  
Florian Fenkl ◽  
Eric W. Lemmon

AbstractA fundamental equation of state in terms of the Helmholtz energy is presented for chloroethene (vinyl chloride). Due to its fundamental nature, it can be used to consistently calculate all thermodynamic state properties in the fluid region. Based on the underlying experimental database, it is valid from the triple-point temperature 119.31 K to 430 K with a maximum pressure of 100 MPa. In addition to the accurate reproduction of experimental data, correct extrapolation behavior during the development of the equation was attained. This enables the equation to be applied in modern mixture frameworks.


Author(s):  
Yahui Li ◽  
Yihan Feng ◽  
Wei Wang ◽  
Jibin Zhong ◽  
Dandan Zhang

Author(s):  
Hsiu-Chung Yeh ◽  
Dimitri M Gangardt ◽  
A Kamenev

Abstract We study large deviations in interacting quantum liquids with the polytropic equation of state P (ρ) ∼ ργ, where ρ is density and P is pressure. By solving hydrodynamic equations in imaginary time we evaluate the instanton action and calculate the emptiness formation probability (EFP), the probability that no particle resides in a macroscopic interval of a given size. Analytic solutions are found for a certain infinite sequence of rational polytropic indexes γ and the result can be analytically continued to any value of γ ≥ 1. Our findings agree with (and significantly expand on) previously known analytical and numerical results for EFP in quantum liquids. We also discuss interesting universal spacetime features of the instanton solution.


Sign in / Sign up

Export Citation Format

Share Document