energy functionals
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 67)

H-INDEX

42
(FIVE YEARS 5)

Author(s):  
Roberto Alicandro ◽  
Andrea Braides ◽  
Marco Cicalese ◽  
Lucia De Luca ◽  
Andrey Piatnitski

AbstractWe describe the emergence of topological singularities in periodic media within the Ginzburg–Landau model and the core-radius approach. The energy functionals of both models are denoted by $$E_{\varepsilon ,\delta }$$ E ε , δ , where $$\varepsilon $$ ε represent the coherence length (in the Ginzburg–Landau model) or the core-radius size (in the core-radius approach) and $$\delta $$ δ denotes the periodicity scale. We carry out the $$\Gamma $$ Γ -convergence analysis of $$E_{\varepsilon ,\delta }$$ E ε , δ as $$\varepsilon \rightarrow 0$$ ε → 0 and $$\delta =\delta _\varepsilon \rightarrow 0$$ δ = δ ε → 0 in the $$|\log \varepsilon |$$ | log ε | scaling regime, showing that the $$\Gamma $$ Γ -limit consists in the energy cost of finitely many vortex-like point singularities of integer degree. After introducing the scale parameter $$\begin{aligned} \lambda =\min \Bigl \{1,\lim _{\varepsilon \rightarrow 0} {|\log \delta _\varepsilon |\over |\log \varepsilon |}\Bigr \} \end{aligned}$$ λ = min { 1 , lim ε → 0 | log δ ε | | log ε | } (upon extraction of subsequences), we show that in a sense we always have a separation-of-scale effect: at scales smaller than $$\varepsilon ^\lambda $$ ε λ we first have a concentration process around some vortices whose location is subsequently optimized, while for scales larger than $$\varepsilon ^\lambda $$ ε λ the concentration process takes place “after” homogenization.


Computation ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 135
Author(s):  
Carmelo Naim ◽  
Claudio Amovilli

In this work, we present a method to build a first order reduced density matrix (1-RDM) of a molecule from variational Quantum Monte Carlo (VMC) computations by means of a given correlated mapping wave function. Such a wave function is modeled on a Generalized Valence Bond plus Complete Active Space Self Configuration Interaction form and fits at best the density resulting from the Slater-Jastrow wave function of VMC. The accuracy of the method proposed has been proved by comparing the resulting kinetic energy with the corresponding VMC value. This 1-RDM is used to analyze the amount of correlation eventually captured in Kohn-Sham calculations performed in an unrestricted approach (UKS-DFT) and with different energy functionals. We performed test calculations on a selected set of molecules that show a significant multireference character. In this analysis, we compared both local and global indicators of nondynamic and dynamic correlation. Moreover, following the natural orbital decomposition of the 1-RDM, we also compared the effective temperatures of the corresponding Fermi-like distributions. Although there is a general agreement between UKS-DFT and VMC, we found the best match with the functional LC-BLYP.


Author(s):  
Vittoria Urso

The development of novel Kinetic Energy (KE) functionals is an important topic in density functional theory (DFT). In particular, this happens by means of an analysis with newly developed benchmark sets. Here, I present a study of Laplacian-level kinetic energy functionals applied to metallic nanosystems. The nanoparticles are modeled using jellium sph eres of different sizes, background densities, and number of electrons. The ability of different functionals to reproduce the correct kinetic energy density and potential of various nanoparticles is investigated and analyzed in terms of semilocal descriptors. Most semilocal KE functionals are based on modifications of the second-order gradient expansion GE2 or GE4. I find that the Laplacian contribute is fundamental for the description of the energy and the potential of nanoparticles.


Author(s):  
Valery V. Denisenko ◽  
◽  
Semen A. Nesterov

Three-dimensional elliptic boundary value problems arising in the mathematical modeling of quasi-stationary electric fields and currents in conductors with gyrotropic conductivity tensor in domains homeomorphic to the spherical layer are considered. The same problems are mathematical models of thermal conductivity or diffusion in moving or gyrotropic media. The operators of the problems in the traditional formulation are non-symmetric. New statements of the problems with symmetric positive definite operators are proposed. For the four boundary value problems the quadratic energy functionals, to the minimization of which the solutions of these problems are reduced, are constructed. Estimates of the obtained quadratic forms are made in comparison with the form appearing in the Dirichlet principle for the Poisson equation


Author(s):  
Daniel S. King ◽  
Donald G. Truhlar ◽  
Laura Gagliardi

Sign in / Sign up

Export Citation Format

Share Document