The influence of solutes on the liquid-junction potential in the determination of pH in mixtures of an organic solvent and water

2010 ◽  
Vol 90 (3) ◽  
pp. 289-300 ◽  
Author(s):  
A. van Veen ◽  
A.J. Hoefnagel ◽  
B.M. Wepster
1992 ◽  
Vol 21 (8) ◽  
pp. 1619-1622 ◽  
Author(s):  
Akira Yamauchi ◽  
Minako Inoue

Electrochem ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 197-215
Author(s):  
Jerzy J. Jasielec

This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document