ionic strength
Recently Published Documents


TOTAL DOCUMENTS

6473
(FIVE YEARS 678)

H-INDEX

133
(FIVE YEARS 13)

2022 ◽  
Vol 113 ◽  
pp. 81-91
Author(s):  
Zhipeng Zhang ◽  
Bing Li ◽  
Filicia Wicaksana ◽  
Wei Yu ◽  
Brent Young

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Sijie Mi ◽  
Minquan Xia ◽  
Xinyue Zhang ◽  
Jihong Liu ◽  
Zhaoxia Cai

Pickering high internal phase emulsions (HIPEs) are gel-like concentrated emulsions that have the potential to be an alternative to partially hydrogenated oil (PHO). In this study, egg yolk granules (EYGs), natural complexes of protein and lipid isolated from egg yolk, were used as an emulsifier to prepare Pickering HIPEs. Gel-like HIPEs with an oil phase volume fraction of 85% and with an emulsifier concentration of only 0.5% could be prepared by using EYGs as an emulsifier. The EYGs were able to form stable HIPEs at NaCl ionic strengths over 0.2 M and at pH over 5.0 with NaCl ionic strength of 0.3 M. The EYGs, which could stabilize HIPEs, were easily to adsorb and cover the oil-water interface to form emulsion droplets with small particle size. In addition, interacting EYGs in the aqueous phase formed a continuous network structure, and the oil droplets packed closely, exhibiting high elasticity and shear thinning behavior. Furthermore, the formed HIPEs had suitable storage stability with no significant changes in appearance and microstructure after storage for 60 days. This work can transform traditional oils from liquid-like to solid-like by using EYGs to enrich food processing diversity and improve the storage stability of oils while reducing the intake of PHO and providing a healthier diet for consumers.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 200
Author(s):  
Christian Scheurer ◽  
Rafael E. Hincapie ◽  
Elisabeth Neubauer ◽  
Astrid Metz ◽  
Daniel Ness

We investigated the interaction of silica nanostructured particles and sandstone rock using various experimental approaches, such as fluid compatibility, batch sorption and single-phase core-floods. Diol and polyethylenglycol (PEG) surface-modified nanostructured silica materials were tested using two brines differing in ionic strength and with the addition of sodium carbonate (Na2CO3). Berea and Keuper outcrop materials (core plug and crushed samples) were used. Core-flood effluents were analysed to define changes in concentration and a rock’s retention compared to a tracer. Field Flow Fractionation (FFF) and Dynamic Light Scattering (DLS) were performed to investigate changes in the effluent’s size distribution. Adsorption was evaluated using UV–visible spectroscopy and scanning electron microscopy (SEM). The highest adsorption was observed in brine with high ionic strength, whereas the use of alkali reduced the adsorption. The crushed material from Berea rock showed slightly higher adsorption compared to Keuper rock, whereas temperature had a minor effect on adsorption behaviour. In core-flood experiments, no effects on permeability have been observed. The used particles showed a delayed breakthrough compared to the tracer, and bigger particles passed the rock core faster. Nanoparticle recovery was significantly lower for PEG-modified nanomaterials in Berea compared to diol-modified nanomaterials, suggesting high adsorption. SEM images indicate that adsorption spots are defined via surface roughness rather than mineral type. Despite an excess of nanomaterials in the porous medium, monolayer adsorption was the prevailing type observed.


2022 ◽  
pp. 134694
Author(s):  
Xueru Deng ◽  
Yufeng Jiang ◽  
Min'an Zhang ◽  
Zhijiang Nan ◽  
Xinru Liang ◽  
...  

2022 ◽  
pp. 199-222
Author(s):  
Gamze Ersan ◽  
Mahmut Selim Ersan

In the last decades, numerous research studies have been focused on the mitigation of different classes of contaminants by varying types of NPs. Treatment mechanisms were controlled by properties of contaminants (e.g., organic vs inorganic, molecular size, and hydrophobicity, etc.), NPs (e.g., surface charge, area, pore size, and surface functional groups, etc.), and aqueous water (e.g., organic matter types, pH, ionic strength, surfactants, and temperature). Therefore, this chapter includes (1) a literature summary for the removal of contaminants by carbon- and metal-based NPs, (2) a discussion on the controlling mechanisms for the mitigation of contaminants by carbon- and metal-based NPs, and (3) an evaluation on the application and implication of carbon- and metal-based NPs in environmental studies. This chapter also identifies future research needs and challenges on the application of carbon- and metal-based NPs for environmental remediation.


2022 ◽  
Vol 175 ◽  
pp. 107286
Author(s):  
Leiming Wang ◽  
Shenghua Yin ◽  
Bona Deng ◽  
Aixiang Wu

2021 ◽  
Vol 21 (6) ◽  
pp. 201-207
Author(s):  
Seok Gu Gang ◽  
Jongwon Jung

An experiment to evaluate the swelling characteristics during saturation of representative clay minerals, kaolinite, illite, montmorillonite, and bentonite, according to the ionic strength of the pore water, was conducted. The results showed that in distilled water (DW), the average swelling ratios of kaolinite, illite, and bentonite were 10.95%, 12.51%, and 26.60%, respectively. However, montmorillonite exhibited a relatively large swelling ratio of approximately 152.6%. In 1 M brine, kaolinite, illite, and bentonite exhibited swelling ratios of 12.42%, 16.23%, and 21.91%, respectively, while that of montmorillonite was relatively small (0.83%). In the case of the ground containing montmorillonite, a high swelling ratio is expected with an increase in saturation and conductivity.


Author(s):  
Михаил Игоревич Скобин ◽  
Мариана Александровна Феофанова ◽  
Тимофей Владимирович Крюков

Исследование синтетических и природных материалов пригодных для создания наноносителей и их модификация обеспечит прорыв в лечении многих заболеваний. Хорошим выбором для создания наноносителей являются гликозаминогликаны (гепарин и его производные), благодаря их уникальным биологическим и физико-химическим особенностям. Формирование композиций было исследовано методом pH -метрического титрования при 37 °С на фоне 0,15 М NaCl. С использованием программы NewDALSFEK определены значимые формы и химические равновесия. В диапазоне pH от 2,7 до 5 образуется комплекс вида {[LnHep]}, где Hep - мономерное звено макромолекулы гепарина. Получены данные об устойчивости нанокомпозиций: lgβ[PrHep] = 4,27 ± 0,04, lgβ[SmHep] = 4,28 ± 0,03 , lgβ[EuHep] = 4,28 ± 0,03. Методом M06-HF в сочетании с базисным набором CSDZ+* выполнено квантово-химическое моделирование комплексов. Study of synthetic and natural materials suitable for the creation of nanocarriers and their modification will provide a breakthrough in the treatment of many diseases. Glycosaminoglycans (heparin and its derivatives) are a good choice for creating nanocarriers due to their unique biological and physicochemical properties. The complexation of Pr (III), Sm (III), Eu (III) with heparin anions was studied by potentiometric titration at 37 °C and an ionic strength of 0,15 M NaCl. Significant forms and chemical equilibria were determined using the NewDALSFEK program. In the pH range from 2,7 to 5 , a complex of the type {[LnHep]} is formed, where Hep is a monomeric unit of the heparin macromolecule. Data on the stability of nanocompositions were obtained: lgβ[PrHep] = 4,27 ±0,04, lgβ[SmHep] = 4,28±0,03, lgβ[EuHep] = 4,28±0,03. The M06-HF method in combination with the CSDZ+* basic set was used to perform quantum chemical modeling of the complexes.


Sign in / Sign up

Export Citation Format

Share Document