scholarly journals Stochastic stability and stabilization of discrete-time singular Markovian jump systems with partially unknown transition probabilities

2014 ◽  
Vol 25 (10) ◽  
pp. 1423-1437 ◽  
Author(s):  
Jianhua Wang ◽  
Qingling Zhang ◽  
Xing-Gang Yan ◽  
Ding Zhai
2013 ◽  
Vol 91 (12) ◽  
pp. 1020-1028 ◽  
Author(s):  
Jun Cheng ◽  
Hong Zhu ◽  
Shouming Zhong ◽  
Yuping Zhang ◽  
Guihua Li

This paper addresses the problems of finite-time stochastic stability and stabilization for linear Markovian jump systems subject to partial information on the transition probabilities. By introducing bounded finite time and stochastic character, sufficient conditions that can ensure bounded finite time and H∞ finite-time bounded filtering are derived. Finally, an example is given to illustrate the efficiency of the proposed method.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-22
Author(s):  
Wei Guan ◽  
Lei Fu ◽  
Yuechao Ma

The paper is discussed with the problem of finite-time H∞ filtering for discrete-time singular Markovian jump systems (SMJSs). The systems under consideration consist of time-varying delay, actuator saturation and partly unknown transition probabilities. We pay attention to the design of a H∞ filtering which ensures the filtering error systems to be singular stochastic finite-time boundedness. By employing an adequate stochastic Lyapunov functional together with a class of linear matrix inequalities (LMIs), a sufficient condition is firstly established, which guarantees the systems to achieve our goal and satisfy a prescribed H∞ attenuation level in the given finite-time interval. Considering the above conditions, a distinct presentation for the requested H∞ filter is given. Finally, two numerical examples add to a dynamical Leontief model of economic systems are presented to illustrate the validity of the developed theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hongsheng Lin ◽  
Ying Li ◽  
Guoliang Wang

This paper discussesH∞control problems of continuous-time and discrete-time singular Markovian jump systems (SMJSs) with bounded transition probabilities. Improved sufficient conditions for continuous-time SMJSs to be regular, impulse free, and stochastically stable withγ-disturbance attenuation are established via less conservative inequality to estimate the transition jump rates, so are the discrete-time SMJSs. With the obtained conditions, the design of a state feedback controller which ensures the resulting closed-loop system to be stochastically admissible and withH∞performance is given in terms of linear matrix inequalities (LMIs). Finally, illustrative examples are presented to show the effectiveness and the benefits of the proposed approaches.


2012 ◽  
Vol 235 ◽  
pp. 254-258 ◽  
Author(s):  
Shao Hua Long ◽  
Shou Ming Zhong

The problem of the stochastic admissibility for a class of nonlinear singular Markovian jump systems with time-delay and partially unknown transition probabilities is discussed in this note. The considered singular matrices Er(t) in the discussed system are mode-dependent. By using the free-weighting matrix method and the Lyapunov functional method, a sufficient condition which guarantees the considered system to be stochastically admissible is presented in the form of linear matrix inequalities(LMIs). Finally, a numerical example is given to show the effectiveness of the presented method.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Dan Ye ◽  
Quan-Yong Fan ◽  
Xin-Gang Zhao ◽  
Guang-Hong Yang

This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs) with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document