Internet security meets the IP multimedia subsystem: an overview

2010 ◽  
Vol 3 (2-3) ◽  
pp. 185-206 ◽  
Author(s):  
Andreas Berger ◽  
Ivan Gojmerac ◽  
Oliver Jung
Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


2010 ◽  
Vol 56 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Mosiuoa Tsietsi ◽  
Alfredo Terzoli ◽  
George Wells

Using JAIN SLEE as an Interaction and Policy Manager for Enabler-based Services in Next Generation Networks The IP Multimedia Subsystem is a telecommunications framework with a standard architecture for the provision of services. While the services themselves have not been standardised, standards do exist for basic technologies that can be re-used and aggregated in order to construct more complex services. These elements are called service capabilities by the 3GPP and service enablers by the OMA, both of which are reputable standards bodies in this area. In order to provide re-usability, there is a need to manage access to the service capabilities. Also, in order to build complex services, there is a further need to be able to manage and coordinate the interactions that occur between service capabilities. The 3GPP and the OMA have separately defined network entities that are responsible for handling aspects of these requirements, and are known as a service capability interaction manager (SCIM) and a policy enforcer respectively. However, the internal structure of the SCIM and the policy enforcer have not been standardised by the relevant bodies. In addition, as the SCIM and the policy enforcer have been defined through complementary yet separate processes, there is an opportunity to unify efforts from both bodies. This paper builds on work and standards defined by the bodies, and proposes the design of an interaction manager with features borrowed from both the SCIM and the policy enforcer. To help validate the design, we have identified a platform known as JAIN SLEE which we believe conforms to the model proposed, and we discuss how JAIN SLEE can be used to implement our ideas.


Author(s):  
Mario Di Mauro ◽  
Giovanni Galatro ◽  
Maurizio Longo ◽  
Fabio Postiglione ◽  
Marco Tambasco

2020 ◽  
Vol 62 (5-6) ◽  
pp. 287-293
Author(s):  
Felix Günther

AbstractSecure connections are at the heart of today’s Internet infrastructure, protecting the confidentiality, authenticity, and integrity of communication. Achieving these security goals is the responsibility of cryptographic schemes, more specifically two main building blocks of secure connections. First, a key exchange protocol is run to establish a shared secret key between two parties over a, potentially, insecure connection. Then, a secure channel protocol uses that shared key to securely transport the actual data to be exchanged. While security notions for classical designs of these components are well-established, recently developed and standardized major Internet security protocols like Google’s QUIC protocol and the Transport Layer Security (TLS) protocol version 1.3 introduce novel features for which supporting security theory is lacking.In my dissertation [20], which this article summarizes, I studied these novel and advanced design aspects, introducing enhanced security models and analyzing the security of deployed protocols. For key exchange protocols, my thesis introduces a new model for multi-stage key exchange to capture that recent designs for secure connections establish several cryptographic keys for various purposes and with differing levels of security. It further introduces a formalism for key confirmation, reflecting a long-established practical design criteria which however was lacking a comprehensive formal treatment so far. For secure channels, my thesis captures the cryptographic subtleties of streaming data transmission through a revised security model and approaches novel concepts to frequently update key material for enhanced security through a multi-key channel notion. These models are then applied to study (and confirm) the security of the QUIC and TLS 1.3 protocol designs.


Sign in / Sign up

Export Citation Format

Share Document