streaming data
Recently Published Documents





2022 ◽  
Vol 16 (2) ◽  
pp. 1-27
Yang Yang ◽  
Hongchen Wei ◽  
Zhen-Qiang Sun ◽  
Guang-Yu Li ◽  
Yuanchun Zhou ◽  

Open set classification (OSC) tackles the problem of determining whether the data are in-class or out-of-class during inference, when only provided with a set of in-class examples at training time. Traditional OSC methods usually train discriminative or generative models with the owned in-class data, and then utilize the pre-trained models to classify test data directly. However, these methods always suffer from the embedding confusion problem, i.e., partial out-of-class instances are mixed with in-class ones of similar semantics, making it difficult to classify. To solve this problem, we unify semi-supervised learning to develop a novel OSC algorithm, S2OSC, which incorporates out-of-class instances filtering and model re-training in a transductive manner. In detail, given a pool of newly coming test data, S2OSC firstly filters the mostly distinct out-of-class instances using the pre-trained model, and annotates super-class for them. Then, S2OSC trains a holistic classification model by combing in-class and out-of-class labeled data with the remaining unlabeled test data in a semi-supervised paradigm. Furthermore, considering that data are usually in the streaming form in real applications, we extend S2OSC into an incremental update framework (I-S2OSC), and adopt a knowledge memory regularization to mitigate the catastrophic forgetting problem in incremental update. Despite the simplicity of proposed models, the experimental results show that S2OSC achieves state-of-the-art performance across a variety of OSC tasks, including 85.4% of F1 on CIFAR-10 with only 300 pseudo-labels. We also demonstrate how S2OSC can be expanded to incremental OSC setting effectively with streaming data.

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 113
Rafał Zdunek ◽  
Krzysztof Fonał

Nonnegative Tucker decomposition (NTD) is a robust method used for nonnegative multilinear feature extraction from nonnegative multi-way arrays. The standard version of NTD assumes that all of the observed data are accessible for batch processing. However, the data in many real-world applications are not static or are represented by a large number of multi-way samples that cannot be processing in one batch. To tackle this problem, a dynamic approach to NTD can be explored. In this study, we extend the standard model of NTD to an incremental or online version, assuming volatility of observed multi-way data along one mode. We propose two computational approaches for updating the factors in the incremental model: one is based on the recursive update model, and the other uses the concept of the block Kaczmarz method that belongs to coordinate descent methods. The experimental results performed on various datasets and streaming data demonstrate high efficiently of both algorithmic approaches, with respect to the baseline NTD methods.

2022 ◽  
pp. 1162-1191
Dinesh Chander ◽  
Hari Singh ◽  
Abhinav Kirti Gupta

Data processing has become an important field in today's big data-dominated world. The data has been generating at a tremendous pace from different sources. There has been a change in the nature of data from batch-data to streaming-data, and consequently, data processing methodologies have also changed. Traditional SQL is no longer capable of dealing with this big data. This chapter describes the nature of data and various tools, techniques, and technologies to handle this big data. The chapter also describes the need of shifting big data on to cloud and the challenges in big data processing in the cloud, the migration from data processing to data analytics, tools used in data analytics, and the issues and challenges in data processing and analytics. Then the chapter touches an important application area of streaming data, sentiment analysis, and tries to explore it through some test case demonstrations and results.

2022 ◽  
pp. 1-1
Ze Deng ◽  
Ze Deng ◽  
Yue Wang ◽  
Tao Liu ◽  
Schahram Dustdar ◽  

2022 ◽  
Vol 103 ◽  
pp. 101872
Fabio Grandi ◽  
Federica Mandreoli ◽  
Riccardo Martoglia ◽  
Wilma Penzo

Sign in / Sign up

Export Citation Format

Share Document