scholarly journals Reputation management in collaborative computing systems

2009 ◽  
Vol 3 (6) ◽  
pp. 546-564 ◽  
Author(s):  
Alvaro E. Arenas ◽  
Benjamin Aziz ◽  
Gheorghe Cosmin Silaghi
2008 ◽  
Vol 11 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Xinwen Zhang ◽  
Masayuki Nakae ◽  
Michael J. Covington ◽  
Ravi Sandhu

2012 ◽  
pp. 661-676
Author(s):  
Xiaoxin Wu ◽  
Huan Chen ◽  
Yaoda Liu ◽  
Wenwu Zhu

Energy saving has been studied widely in both of computing and communication research communities. For handheld devices, energy is becoming a more and more critical issue because lots of applications running on handhelds today are computation or communication intensive and take a long time to finish. Unlike previous work that proposes computing or communication energy solutions alone, this paper proposes a novel energy savings approach through mobile collaborative systems, which jointly consider computing and communication energy cost. In this work, the authors use streaming video as investigated application scenario and propose multi-hop pipelined wireless collaborative system to decode video frames with a requirement for maximum inter-frame time. To finish a computing task with such a requirement, this paper proposes a control policy that can dynamically adapt processor frequency and communication transmission rate at the collaborative devices. The authors build a mathematical energy model for collaborative computing systems. Results show that the collaborative system helps save energy, and the transmission rate between collaborators is a key parameter for maximizing energy savings. The energy saving algorithm in computing devices is implemented and the experimental results show the same trend.


Author(s):  
Xiaoxin Wu ◽  
Huan Chen ◽  
Yaoda Liu ◽  
Wenwu Zhu

Energy saving has been studied widely in both of computing and communication research communities. For handheld devices, energy is becoming a more and more critical issue because lots of applications running on handhelds today are computation or communication intensive and take a long time to finish. Unlike previous work that proposes computing or communication energy solutions alone, this paper proposes a novel energy savings approach through mobile collaborative systems, which jointly consider computing and communication energy cost. In this work, the authors use streaming video as investigated application scenario and propose multi-hop pipelined wireless collaborative system to decode video frames with a requirement for maximum inter-frame time. To finish a computing task with such a requirement, this paper proposes a control policy that can dynamically adapt processor frequency and communication transmission rate at the collaborative devices. The authors build a mathematical energy model for collaborative computing systems. Results show that the collaborative system helps save energy, and the transmission rate between collaborators is a key parameter for maximizing energy savings. The energy saving algorithm in computing devices is implemented and the experimental results show the same trend.


2010 ◽  
Vol 1 (2) ◽  
pp. 1-16
Author(s):  
Xiaoxin Wu ◽  
Huan Chen ◽  
Yaoda Liu ◽  
Wenwu Zhu

Energy saving has been studied widely in both of computing and communication research communities. For handheld devices, energy is becoming a more and more critical issue because lots of applications running on handhelds today are computation or communication intensive and take a long time to finish. Unlike previous work that proposes computing or communication energy solutions alone, this paper proposes a novel energy savings approach through mobile collaborative systems, which jointly consider computing and communication energy cost. In this work, the authors use streaming video as investigated application scenario and propose multi-hop pipelined wireless collaborative system to decode video frames with a requirement for maximum inter-frame time. To finish a computing task with such a requirement, this paper proposes a control policy that can dynamically adapt processor frequency and communication transmission rate at the collaborative devices. The authors build a mathematical energy model for collaborative computing systems. Results show that the collaborative system helps save energy, and the transmission rate between collaborators is a key parameter for maximizing energy savings. The energy saving algorithm in computing devices is implemented and the experimental results show the same trend.


Author(s):  
Douglas L. Dorset ◽  
Barbara Moss

A number of computing systems devoted to the averaging of electron images of two-dimensional macromolecular crystalline arrays have facilitated the visualization of negatively-stained biological structures. Either by simulation of optical filtering techniques or, in more refined treatments, by cross-correlation averaging, an idealized representation of the repeating asymmetric structure unit is constructed, eliminating image distortions due to radiation damage, stain irregularities and, in the latter approach, imperfections and distortions in the unit cell repeat. In these analyses it is generally assumed that the electron scattering from the thin negativelystained object is well-approximated by a phase object model. Even when absorption effects are considered (i.e. “amplitude contrast“), the expansion of the transmission function, q(x,y)=exp (iσɸ (x,y)), does not exceed the first (kinematical) term. Furthermore, in reconstruction of electron images, kinematical phases are applied to diffraction amplitudes and obey the constraints of the plane group symmetry.


Sign in / Sign up

Export Citation Format

Share Document