scholarly journals A coordinator-specific privacy-preserving model for E-health monitoring using artificial bee colony approach

2018 ◽  
Vol 1 (4) ◽  
pp. e32 ◽  
Author(s):  
Chandramohan Dhasarathan ◽  
Rajaguru Dayalan ◽  
Vengattaram Thirumal ◽  
Dhavachelvan Ponnurangam
Author(s):  
Shivlal Mewada ◽  
Sita Sharan Gautam ◽  
Pradeep Sharma

A large amount of data is generated through healthcare applications and medical equipment. This data is transferred from one piece of equipment to another and sometimes also communicated over a global network. Hence, security and privacy preserving are major concerns in the healthcare sector. It is seen that traditional anonymization algorithms are viable for sanitization process, but not for restoration task. In this work, artificial bee colony-based privacy preserving model is developed to address the aforementioned issues. In the proposed model, ABC-based algorithm is adopted to generate the optimal key for sanitization of sensitive information. The effectiveness of the proposed model is tested through restoration analysis. Furthermore, several popular attacks are also considered for evaluating the performance of the proposed privacy preserving model. Simulation results of the proposed model are compared with some popular existing privacy preserving models. It is observed that the proposed model is capable of preserving the sensitive information in an efficient manner.


2020 ◽  
Vol 144 ◽  
pp. 113097
Author(s):  
Akbar Telikani ◽  
Amir H. Gandomi ◽  
Asadollah Shahbahrami ◽  
Mohammad Naderi Dehkordi

Author(s):  
Shivlal Mewada ◽  
Sita Sharan Gautam ◽  
Pradeep Sharma

A large amount of data is generated through healthcare applications and medical equipment. This data is transferred from one piece of equipment to another and sometimes also communicated over a global network. Hence, security and privacy preserving are major concerns in the healthcare sector. It is seen that traditional anonymization algorithms are viable for sanitization process, but not for restoration task. In this work, artificial bee colony-based privacy preserving model is developed to address the aforementioned issues. In the proposed model, ABC-based algorithm is adopted to generate the optimal key for sanitization of sensitive information. The effectiveness of the proposed model is tested through restoration analysis. Furthermore, several popular attacks are also considered for evaluating the performance of the proposed privacy preserving model. Simulation results of the proposed model are compared with some popular existing privacy preserving models. It is observed that the proposed model is capable of preserving the sensitive information in an efficient manner.


2019 ◽  
Vol 6 (4) ◽  
pp. 43
Author(s):  
HADIR ADEBIYI BUSAYO ◽  
TIJANI SALAWUDEEN AHMED ◽  
FOLASHADE O. ADEBIYI RISIKAT ◽  
◽  
◽  
...  

2020 ◽  
Vol 38 (9A) ◽  
pp. 1384-1395
Author(s):  
Rakaa T. Kamil ◽  
Mohamed J. Mohamed ◽  
Bashra K. Oleiwi

A modified version of the artificial Bee Colony Algorithm (ABC) was suggested namely Adaptive Dimension Limit- Artificial Bee Colony Algorithm (ADL-ABC). To determine the optimum global path for mobile robot that satisfies the chosen criteria for shortest distance and collision–free with circular shaped static obstacles on robot environment. The cubic polynomial connects the start point to the end point through three via points used, so the generated paths are smooth and achievable by the robot. Two case studies (or scenarios) are presented in this task and comparative research (or study) is adopted between two algorithm’s results in order to evaluate the performance of the suggested algorithm. The results of the simulation showed that modified parameter (dynamic control limit) is avoiding static number of limit which excludes unnecessary Iteration, so it can find solution with minimum number of iterations and less computational time. From tables of result if there is an equal distance along the path such as in case A (14.490, 14.459) unit, there will be a reduction in time approximately to halve at percentage 5%.


Sign in / Sign up

Export Citation Format

Share Document