Intrusion Detection
Recently Published Documents


TOTAL DOCUMENTS

13893
(FIVE YEARS 6134)

H-INDEX

118
(FIVE YEARS 46)

2022 ◽  
pp. 1-27
Author(s):  
Shaokang Cai ◽  
Dezhi Han ◽  
Xinming Yin ◽  
Dun Li ◽  
Chin-Chen Chang

Author(s):  
Eid Rehman ◽  
Muhammad Haseeb-ud-Din ◽  
Arif Jamal Malik ◽  
Tehmina Karmat Khan ◽  
Aaqif Afzaal Abbasi ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 852
Author(s):  
Jesús Díaz-Verdejo ◽  
Javier Muñoz-Calle ◽  
Antonio Estepa Alonso ◽  
Rafael Estepa Alonso ◽  
Germán Madinabeitia

Signature-based Intrusion Detection Systems (SIDS) play a crucial role within the arsenal of security components of most organizations. They can find traces of known attacks in the network traffic or host events for which patterns or signatures have been pre-established. SIDS include standard packages of detection rulesets, but only those rules suited to the operational environment should be activated for optimal performance. However, some organizations might skip this tuning process and instead activate default off-the-shelf rulesets without understanding its implications and trade-offs. In this work, we help gain insight into the consequences of using predefined rulesets in the performance of SIDS. We experimentally explore the performance of three SIDS in the context of web attacks. In particular, we gauge the detection rate obtained with predefined subsets of rules for Snort, ModSecurity and Nemesida using seven attack datasets. We also determine the precision and rate of alert generated by each detector in a real-life case using a large trace from a public webserver. Results show that the maximum detection rate achieved by the SIDS under test is insufficient to protect systems effectively and is lower than expected for known attacks. Our results also indicate that the choice of predefined settings activated on each detector strongly influences its detection capability and false alarm rate. Snort and ModSecurity scored either a very poor detection rate (activating the less-sensitive predefined ruleset) or a very poor precision (activating the full ruleset). We also found that using various SIDS for a cooperative decision can improve the precision or the detection rate, but not both. Consequently, it is necessary to reflect upon the role of these open-source SIDS with default configurations as core elements for protection in the context of web attacks. Finally, we provide an efficient method for systematically determining which rules deactivate from a ruleset to significantly reduce the false alarm rate for a target operational environment. We tested our approach using Snort’s ruleset in our real-life trace, increasing the precision from 0.015 to 1 in less than 16 h of work.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 161
Author(s):  
Hyojoon Han ◽  
Hyukho Kim ◽  
Yangwoo Kim

The complexity of network intrusion detection systems (IDSs) is increasing due to the continuous increases in network traffic, various attacks and the ever-changing network environment. In addition, network traffic is asymmetric with few attack data, but the attack data are so complex that it is difficult to detect one. Many studies on improving intrusion detection performance using feature engineering have been conducted. These studies work well in the dataset environment; however, it is challenging to cope with a changing network environment. This paper proposes an intrusion detection hyperparameter control system (IDHCS) that controls and trains a deep neural network (DNN) feature extractor and k-means clustering module as a reinforcement learning model based on proximal policy optimization (PPO). An IDHCS controls the DNN feature extractor to extract the most valuable features in the network environment, and identifies intrusion through k-means clustering. Through iterative learning using the PPO-based reinforcement learning model, the system is optimized to improve performance automatically according to the network environment, where the IDHCS is used. Experiments were conducted to evaluate the system performance using the CICIDS2017 and UNSW-NB15 datasets. In CICIDS2017, an F1-score of 0.96552 was achieved and UNSW-NB15 achieved an F1-score of 0.94268. An experiment was conducted by merging the two datasets to build a more extensive and complex test environment. By merging datasets, the attack types in the experiment became more diverse and their patterns became more complex. An F1-score of 0.93567 was achieved in the merged dataset, indicating 97% to 99% performance compared with CICIDS2017 and UNSW-NB15. The results reveal that the proposed IDHCS improved the performance of the IDS by automating learning new types of attacks by managing intrusion detection features regardless of the network environment changes through continuous learning.


Author(s):  
Muneeba Nasir ◽  
Abdul Rehman Javed ◽  
Muhammad Adnan Tariq ◽  
Muhammad Asim ◽  
Thar Baker

2022 ◽  
Vol 4 ◽  
Author(s):  
Qasem Abu Al-Haija

With the prompt revolution and emergence of smart, self-reliant, and low-power devices, Internet of Things (IoT) has inconceivably expanded and impacted almost every real-life application. Nowadays, for example, machines and devices are now fully reliant on computer control and, instead, they have their own programmable interfaces, such as cars, unmanned aerial vehicles (UAVs), and medical devices. With this increased use of IoT, attack capabilities have increased in response, which became imperative that new methods for securing these systems be developed to detect attacks launched against IoT devices and gateways. These attacks are usually aimed at accessing, changing, or destroying sensitive information; extorting money from users; or interrupting normal business processes. In this research, we present new efficient and generic top-down architecture for intrusion detection, and classification in IoT networks using non-traditional machine learning is proposed in this article. The proposed architecture can be customized and used for intrusion detection/classification incorporating any IoT cyber-attack datasets, such as CICIDS Dataset, MQTT dataset, and others. Specifically, the proposed system is composed of three subsystems: feature engineering (FE) subsystem, feature learning (FL) subsystem, and detection and classification (DC) subsystem. All subsystems have been thoroughly described and analyzed in this article. Accordingly, the proposed architecture employs deep learning models to enable the detection of slightly mutated attacks of IoT networking with high detection/classification accuracy for the IoT traffic obtained from either real-time system or a pre-collected dataset. Since this work employs the system engineering (SE) techniques, the machine learning technology, the cybersecurity of IoT systems field, and the collective corporation of the three fields have successfully yielded a systematic engineered system that can be implemented with high-performance trajectories.


2022 ◽  
Vol 19 ◽  
pp. 474-480
Author(s):  
Nevila Baci ◽  
Kreshnik Vukatana ◽  
Marius Baci

Small and medium enterprises (SMEs) are businesses that account for a large percentage of the economy in many countries, but they lack cyber security. The present study examines different supervised machine learning methods with a focus on intrusion detection systems (IDSs) that will help in improving SMEs’ security. The algorithms that are tested through a real dataset, are Naïve Bayes, Sequential minimal optimization (SMO), C4.5 decision tree, and Random Forest. The experiments are run using the Waikato Environment for Knowledge Analyses (WEKA) 3.8.4 tools and the metrics used to evaluate the results were: accuracy, false-positive rate (FPR), and total time to train and build a classification model. The results obtained from the original dataset with 130 features show a high value of accuracy, but the computation time to build the classification model was notably high for the cases of C4.5 (1 hr. and 20 mins) and SMO algorithm (4 hrs. and 20 mins). the Information Gain (IG) method was used and the result was impressive. The time needed to train the model was reduced in the order of a few minutes and the accuracy was high (above 95%). In the end, challenges that SMEs can have for choosing an IDS such as lack of scalability and autonomic self-adaptation, can be solved by using a correct methodology with machine learning techniques.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 567
Author(s):  
Muhammad Husnain ◽  
Khizar Hayat ◽  
Enrico Cambiaso ◽  
Ubaid U. Fayyaz ◽  
Maurizio Mongelli ◽  
...  

The advancement in the domain of IoT accelerated the development of new communication technologies such as the Message Queuing Telemetry Transport (MQTT) protocol. Although MQTT servers/brokers are considered the main component of all MQTT-based IoT applications, their openness makes them vulnerable to potential cyber-attacks such as DoS, DDoS, or buffer overflow. As a result of this, an efficient intrusion detection system for MQTT-based applications is still a missing piece of the IoT security context. Unfortunately, existing IDSs do not provide IoT communication protocol support such as MQTT or CoAP to validate crafted or malformed packets for protecting the protocol implementation vulnerabilities of IoT devices. In this paper, we have designed and developed an MQTT parsing engine that can be integrated with network-based IDS as an initial layer for extensive checking against IoT protocol vulnerabilities and improper usage through a rigorous validation of packet fields during the packet-parsing stage. In addition, we evaluate the performance of the proposed solution across different reported vulnerabilities. The experimental results demonstrate the effectiveness of the proposed solution for detecting and preventing the exploitation of vulnerabilities on IoT protocols.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 21
Author(s):  
Ruohao Zhang ◽  
Jean-Philippe Condomines ◽  
Emmanuel Lochin

The rapid development of Internet of Things (IoT) technology, together with mobile network technology, has created a never-before-seen world of interconnection, evoking research on how to make it vaster, faster, and safer. To support the ongoing fight against the malicious misuse of networks, in this paper we propose a novel algorithm called AMDES (unmanned aerial system multifractal analysis intrusion detection system) for spoofing attack detection. This novel algorithm is based on both wavelet leader multifractal analysis (WLM) and machine learning (ML) principles. In earlier research on unmanned aerial systems (UAS), intrusion detection systems (IDS) based on multifractal (MF) spectral analysis have been used to provide accurate MF spectrum estimations of network traffic. Such an estimation is then used to detect and characterize flooding anomalies that can be observed in an unmanned aerial vehicle (UAV) network. However, the previous contributions have lacked the consideration of other types of network intrusions commonly observed in UAS networks, such as the man in the middle attack (MITM). In this work, this promising methodology has been accommodated to detect a spoofing attack within a UAS. This methodology highlights a robust approach in terms of false positive performance in detecting intrusions in a UAS location reporting system.


Sign in / Sign up

Export Citation Format

Share Document