Network Intrusion
Recently Published Documents





Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 161
Hyojoon Han ◽  
Hyukho Kim ◽  
Yangwoo Kim

The complexity of network intrusion detection systems (IDSs) is increasing due to the continuous increases in network traffic, various attacks and the ever-changing network environment. In addition, network traffic is asymmetric with few attack data, but the attack data are so complex that it is difficult to detect one. Many studies on improving intrusion detection performance using feature engineering have been conducted. These studies work well in the dataset environment; however, it is challenging to cope with a changing network environment. This paper proposes an intrusion detection hyperparameter control system (IDHCS) that controls and trains a deep neural network (DNN) feature extractor and k-means clustering module as a reinforcement learning model based on proximal policy optimization (PPO). An IDHCS controls the DNN feature extractor to extract the most valuable features in the network environment, and identifies intrusion through k-means clustering. Through iterative learning using the PPO-based reinforcement learning model, the system is optimized to improve performance automatically according to the network environment, where the IDHCS is used. Experiments were conducted to evaluate the system performance using the CICIDS2017 and UNSW-NB15 datasets. In CICIDS2017, an F1-score of 0.96552 was achieved and UNSW-NB15 achieved an F1-score of 0.94268. An experiment was conducted by merging the two datasets to build a more extensive and complex test environment. By merging datasets, the attack types in the experiment became more diverse and their patterns became more complex. An F1-score of 0.93567 was achieved in the merged dataset, indicating 97% to 99% performance compared with CICIDS2017 and UNSW-NB15. The results reveal that the proposed IDHCS improved the performance of the IDS by automating learning new types of attacks by managing intrusion detection features regardless of the network environment changes through continuous learning.

2022 ◽  
Vol 8 ◽  
pp. e820
Hafiza Anisa Ahmed ◽  
Anum Hameed ◽  
Narmeen Zakaria Bawany

The expeditious growth of the World Wide Web and the rampant flow of network traffic have resulted in a continuous increase of network security threats. Cyber attackers seek to exploit vulnerabilities in network architecture to steal valuable information or disrupt computer resources. Network Intrusion Detection System (NIDS) is used to effectively detect various attacks, thus providing timely protection to network resources from these attacks. To implement NIDS, a stream of supervised and unsupervised machine learning approaches is applied to detect irregularities in network traffic and to address network security issues. Such NIDSs are trained using various datasets that include attack traces. However, due to the advancement in modern-day attacks, these systems are unable to detect the emerging threats. Therefore, NIDS needs to be trained and developed with a modern comprehensive dataset which contains contemporary common and attack activities. This paper presents a framework in which different machine learning classification schemes are employed to detect various types of network attack categories. Five machine learning algorithms: Random Forest, Decision Tree, Logistic Regression, K-Nearest Neighbors and Artificial Neural Networks, are used for attack detection. This study uses a dataset published by the University of New South Wales (UNSW-NB15), a relatively new dataset that contains a large amount of network traffic data with nine categories of network attacks. The results show that the classification models achieved the highest accuracy of 89.29% by applying the Random Forest algorithm. Further improvement in the accuracy of classification models is observed when Synthetic Minority Oversampling Technique (SMOTE) is applied to address the class imbalance problem. After applying the SMOTE, the Random Forest classifier showed an accuracy of 95.1% with 24 selected features from the Principal Component Analysis method.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 432
Xuan-Ha Nguyen ◽  
Xuan-Duong Nguyen ◽  
Hoang-Hai Huynh ◽  
Kim-Hung Le

Cyber security has become increasingly challenging due to the proliferation of the Internet of things (IoT), where a massive number of tiny, smart devices push trillion bytes of data to the Internet. However, these devices possess various security flaws resulting from the lack of defense mechanisms and hardware security support, therefore making them vulnerable to cyber attacks. In addition, IoT gateways provide very limited security features to detect such threats, especially the absence of intrusion detection methods powered by deep learning. Indeed, deep learning models require high computational power that exceeds the capacity of these gateways. In this paper, we introduce Realguard, an DNN-based network intrusion detection system (NIDS) directly operated on local gateways to protect IoT devices within the network. The superiority of our proposal is that it can accurately detect multiple cyber attacks in real time with a small computational footprint. This is achieved by a lightweight feature extraction mechanism and an efficient attack detection model powered by deep neural networks. Our evaluations on practical datasets indicate that Realguard could detect ten types of attacks (e.g., port scan, Botnet, and FTP-Patator) in real time with an average accuracy of 99.57%, whereas the best of our competitors is 98.85%. Furthermore, our proposal effectively operates on resource-constraint gateways (Raspberry PI) at a high packet processing rate reported about 10.600 packets per second.

Suresh Kumar Amalapuram ◽  
Akash Tadwai ◽  
Reethu Vinta ◽  
Sumohana S. Channappayya ◽  
Bheemarjuna Reddy Tamma

2022 ◽  
Vol 355 ◽  
pp. 03067
Kai Jin ◽  
Zhanji Niu ◽  
Jieping Liu ◽  
Jinxue Bai ◽  
Lei Zhang

The relationship between industrial control system and Internet is becoming closer and closer, and its network security has attracted much attention. Penetration testing is an active network intrusion detection technology, which plays an indispensable role in protecting the security of the system. This paper mainly introduces the principle of penetration testing, summarizes the current cutting-edge penetration testing technology, and looks forward to its development.

Sign in / Sign up

Export Citation Format

Share Document