scholarly journals Impact of wind power forecasting error bias on the economic operation of autonomous power systems

Wind Energy ◽  
2009 ◽  
Vol 12 (4) ◽  
pp. 315-331 ◽  
Author(s):  
Antonis G. Tsikalakis ◽  
Nikos D. Hatziargyriou ◽  
Yiannis A. Katsigiannis ◽  
Pavlos S. Georgilakis
2019 ◽  
Vol 139 (3) ◽  
pp. 212-224
Author(s):  
Xiaowei Dui ◽  
Masakazu Ito ◽  
Yu Fujimoto ◽  
Yasuhiro Hayashi ◽  
Guiping Zhu ◽  
...  

2019 ◽  
Vol 9 (20) ◽  
pp. 4417 ◽  
Author(s):  
Sana Mujeeb ◽  
Turki Ali Alghamdi ◽  
Sameeh Ullah ◽  
Aisha Fatima ◽  
Nadeem Javaid ◽  
...  

Recently, power systems are facing the challenges of growing power demand, depleting fossil fuel and aggravating environmental pollution (caused by carbon emission from fossil fuel based power generation). The incorporation of alternative low carbon energy generation, i.e., Renewable Energy Sources (RESs), becomes crucial for energy systems. Effective Demand Side Management (DSM) and RES incorporation enable power systems to maintain demand, supply balance and optimize energy in an environmentally friendly manner. The wind power is a popular energy source because of its environmental and economical benefits. However, the uncertainty of wind power makes its incorporation in energy systems really difficult. To mitigate the risk of demand-supply imbalance, an accurate estimation of wind power is essential. Recognizing this challenging task, an efficient deep learning based prediction model is proposed for wind power forecasting. The proposed model has two stages. In the first stage, Wavelet Packet Transform (WPT) is used to decompose the past wind power signals. Other than decomposed signals and lagged wind power, multiple exogenous inputs (such as, calendar variable and Numerical Weather Prediction (NWP)) are also used as input to forecast wind power. In the second stage, a new prediction model, Efficient Deep Convolution Neural Network (EDCNN), is employed to forecast wind power. A DSM scheme is formulated based on forecasted wind power, day-ahead demand and price. The proposed forecasting model’s performance was evaluated on big data of Maine wind farm ISO NE, USA.


2021 ◽  
Vol 13 (24) ◽  
pp. 13609
Author(s):  
Diaa Salman ◽  
Mehmet Kusaf

Unit Commitment (UC) is a complicated integrational optimization method used in power systems. There is previous knowledge about the generation that has to be committed among the available ones to satisfy the load demand, reduce the generation cost and run the system smoothly. However, the UC problem has become more monotonous with the integration of renewable energy in the power network. With the growing concern towards utilizing renewable sources for producing power, this task has become important for power engineers today. The uncertainty of forecasting the output power of renewable energy will affect the solution of the UC problem and may cause serious risks to the operation and control of the power system. In power systems, wind power forecasting is an essential issue and has been studied widely so as to attain more precise wind forecasting results. In this study, a recurrent neural network (RNN) and a support vector machine (SVM) are used to forecast the day-ahead performance of the wind power which can be used for planning the day-ahead performance of the generation system by using UC optimization techniques. The RNN method is compared with the SVM approach in forecasting the wind power performance; the results show that the RNN method provides more accurate and secure results than SVM, with an average error of less than 5%. The suggested approaches are tested by applying them to the standard IEEE-30 bus test system. Moreover, a hybrid of a dynamic programming optimization technique and a genetic algorithm (DP-GA) are compared with different optimization techniques for day ahead, and the proposed technique outperformed the other methods by 93,171$ for 24 h. It is also found that the uncertainty of the RNN affects only 0.0725% of the DP-GA-optimized UC performance. This study may help the decision-makers, particularly in small power-generation firms, in planning the day-ahead performance of the electrical networks.


Sign in / Sign up

Export Citation Format

Share Document