scholarly journals Ideals Whose Hilbert Function and Hilbert Polynomial Agree at n = 1

1993 ◽  
Vol 157 (2) ◽  
pp. 534-547 ◽  
Author(s):  
J.D. Sally
2019 ◽  
Vol 169 (2) ◽  
pp. 335-355
Author(s):  
KRITI GOEL ◽  
J. K. VERMA ◽  
VIVEK MUKUNDAN

AbstractLet (R, ) be an analytically unramified local ring of positive prime characteristic p. For an ideal I, let I* denote its tight closure. We introduce the tight Hilbert function $$H_I^*\left( n \right) = \Im \left( {R/\left( {{I^n}} \right)*} \right)$$ and the corresponding tight Hilbert polynomial $$P_I^*\left( n \right)$$, where I is an m-primary ideal. It is proved that F-rationality can be detected by the vanishing of the first coefficient of $$P_I^*\left( n \right)$$. We find the tight Hilbert polynomial of certain parameter ideals in hypersurface rings and Stanley-Reisner rings of simplicial complexes.


1991 ◽  
Vol 14 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Shrinivas G. Udpikar

LetX=(Xij)be anm(1)bym(2)matrix whose entriesXij,1≤i≤m(1),1≤j≤m(2); are indeterminates over a fieldK. LetK[X]be the polynomial ring in thesem(1)m(2)variables overK. A part of the second fundamental theorem of Invariant Theory says that the idealI[p+1]inK[X], generated by(p+1)by(p+1)minors ofXis prime. More generally in [1], Abhyankar defines an idealI[p+a]inK[X], generated by different size minors ofXand not only proves its primeness but also calculates the Hilbert function as well as the Hilbert polynomial of this ideal. The said Hilbert polynomial is completely determined by certain integer valued functionsFD(m,p,a). In this paper we prove some important properties of these integer valued functions.


2018 ◽  
Vol 10 (2) ◽  
pp. 303-312
Author(s):  
N.B. Ilash

We consider one of the fundamental problems of classical invariant theory, the research of Hilbert polynomials for an algebra of invariants of Lie group $SL_2$. Form of the Hilbert polynomials gives us important information about the structure of the algebra. Besides, the coefficients and the degree of the Hilbert polynomial play an important role in algebraic geometry. It is well known that the Hilbert function of the algebra $SL_n$-invariants is quasi-polynomial. The Cayley-Sylvester formula for calculation of values of the Hilbert function for algebra of covariants of binary $d$-form $\mathcal{C}_{d}= \mathbb{C}[V_d\oplus \mathbb{C}^2]_{SL_2}$ (here $V_d$ is the $d+1$-dimensional space of binary forms of degree $d$) was obtained by Sylvester. Then it was generalized to the algebra of joint invariants for $n$ binary forms. But the Cayley-Sylvester formula is not expressed in terms of polynomials.In our article we consider the problem of computing the Hilbert polynomials for the algebras of joint invariants and joint covariants of $n$ linear forms and $n$ quadratic forms. We express the Hilbert polynomials $\mathcal{H} \mathcal{I}^{(n)}_1,i)=\dim(\mathcal{C}^{(n)}_1)_i, \mathcal{H}(\mathcal{C}^{(n)}_1,i)=\dim(\mathcal{C}^{(n)}_1)_i,$ $\mathcal{H}(\mathcal{I}^{(n)}_2,i)=\dim(\mathcal{I}^{(n)}_2)_i, \mathcal{H}(\mathcal{C}^{(n)}_2,i)=\dim(\mathcal{C}^{(n)}_2)_i$ of those algebras in terms of quasi-polynomial. We also present them in the form of Narayana numbers and generalized hypergeometric series.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rosa M. Miró-Roig ◽  
Martí Salat-Moltó

Abstract In this paper, we consider Z r \mathbb{Z}^{r} -graded modules on the Cl ⁡ ( X ) \operatorname{Cl}(X) -graded Cox ring C ⁢ [ x 1 , … , x r ] \mathbb{C}[x_{1},\dotsc,x_{r}] of a smooth complete toric variety 𝑋. Using the theory of Klyachko filtrations in the reflexive case, we construct a collection of lattice polytopes codifying the multigraded Hilbert function of the module. We apply this approach to reflexive Z s + r + 2 \mathbb{Z}^{s+r+2} -graded modules over any non-standard bigraded polynomial ring C ⁢ [ x 0 , … , x s , y 0 , … , y r ] \mathbb{C}[x_{0},\dotsc,x_{s},\allowbreak y_{0},\dotsc,y_{r}] . In this case, we give sharp bounds for the multigraded regularity index of their multigraded Hilbert function, and a method to compute their Hilbert polynomial.


2013 ◽  
Vol 7 (5) ◽  
pp. 1019-1064 ◽  
Author(s):  
Giulio Caviglia ◽  
Satoshi Murai

2015 ◽  
Vol 17 (06) ◽  
pp. 1550069
Author(s):  
P. Bantay

We present a formula for vector-valued modular forms, expressing the value of the Hilbert-polynomial of the module of holomorphic forms evaluated at specific arguments in terms of traces of representation matrices, restricting the weight distribution of the free generators.


Sign in / Sign up

Export Citation Format

Share Document