lattice polytopes
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Gennadiy Averkov ◽  
Johannes Hofscheier ◽  
Benjamin Nill

AbstractIn this paper we motivate some new directions of research regarding the lattice width of convex bodies. We show that convex bodies of sufficiently large width contain a unimodular copy of a standard simplex. Following an argument of Eisenbrand and Shmonin, we prove that every lattice polytope contains a minimal generating set of the affine lattice spanned by its lattice points such that the number of generators (and the lattice width of their convex hull) is bounded by a constant which only depends on the dimension. We also discuss relations to recent results on spanning lattice polytopes and how our results could be viewed as the beginning of the study of generalized flatness constants. Regarding symplectic geometry, we point out how the lattice width of a Delzant polytope is related to upper and lower bounds on the Gromov width of its associated symplectic toric manifold. Throughout, we include several open questions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rosa M. Miró-Roig ◽  
Martí Salat-Moltó

Abstract In this paper, we consider Z r \mathbb{Z}^{r} -graded modules on the Cl ⁡ ( X ) \operatorname{Cl}(X) -graded Cox ring C ⁢ [ x 1 , … , x r ] \mathbb{C}[x_{1},\dotsc,x_{r}] of a smooth complete toric variety 𝑋. Using the theory of Klyachko filtrations in the reflexive case, we construct a collection of lattice polytopes codifying the multigraded Hilbert function of the module. We apply this approach to reflexive Z s + r + 2 \mathbb{Z}^{s+r+2} -graded modules over any non-standard bigraded polynomial ring C ⁢ [ x 0 , … , x s , y 0 , … , y r ] \mathbb{C}[x_{0},\dotsc,x_{s},\allowbreak y_{0},\dotsc,y_{r}] . In this case, we give sharp bounds for the multigraded regularity index of their multigraded Hilbert function, and a method to compute their Hilbert polynomial.


Author(s):  
Giulia Codenotti ◽  
Francisco Santos ◽  
Matthias Schymura

AbstractWe explore upper bounds on the covering radius of non-hollow lattice polytopes. In particular, we conjecture a general upper bound of d/2 in dimension d, achieved by the “standard terminal simplices” and direct sums of them. We prove this conjecture up to dimension three and show it to be equivalent to the conjecture of González-Merino and Schymura (Discrete Comput. Geom. 58(3), 663–685 (2017)) that the d-th covering minimum of the standard terminal n-simplex equals d/2, for every $$n\ge d$$ n ≥ d . We also show that these two conjectures would follow from a discrete analog for lattice simplices of Hadwiger’s formula bounding the covering radius of a convex body in terms of the ratio of surface area versus volume. To this end, we introduce a new notion of discrete surface area of non-hollow simplices. We prove our discrete analog in dimension two and give strong evidence for its validity in arbitrary dimension.


10.37236/9621 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Margaret Bayer ◽  
Bennet Goeckner ◽  
Su Ji Hong ◽  
Tyrrell McAllister ◽  
McCabe Olsen ◽  
...  

Given a family of lattice polytopes, two common questions in Ehrhart Theory are determining when a polytope has the integer decomposition property and determining when a polytope is reflexive. While these properties are of independent interest, the confluence of these properties is a source of active investigation due to conjectures regarding the unimodality of the $h^\ast$-polynomial. In this paper, we consider the Newton polytopes arising from two families of polynomials in algebraic combinatorics: Schur polynomials and inflated symmetric Grothendieck polynomials. In both cases, we prove that these polytopes have the integer decomposition property by using the fact that both families of polynomials have saturated Newton polytope. Furthermore, in both cases, we provide a complete characterization of when these polytopes are reflexive. We conclude with some explicit formulas and unimodality implications of the $h^\ast$-vector in the case of Schur polynomials.


2021 ◽  
Vol 8 (14) ◽  
pp. 399-419
Author(s):  
M. Blanco ◽  
C. Haase ◽  
J. Hofmann ◽  
F. Santos
Keyword(s):  

Author(s):  
Katharina Jochemko

Abstract We study rational generating functions of sequences $\{a_n\}_{n\geq 0}$ that agree with a polynomial and investigate symmetric decompositions of the numerator polynomial for subsequences $\{a_{rn}\}_{n\geq 0}$. We prove that if the numerator polynomial for $\{a_n\}_{n\geq 0}$ is of degree $s$ and its coefficients satisfy a set of natural linear inequalities, then the symmetric decomposition of the numerator for $\{a_{rn}\}_{n\geq 0}$ is real-rooted whenever $r\geq \max \{s,d+1-s\}$. Moreover, if the numerator polynomial for $\{a_n\}_{n\geq 0}$ is symmetric, then we show that the symmetric decomposition for $\{a_{rn}\}_{n\geq 0}$ is interlacing. We apply our results to Ehrhart series of lattice polytopes. In particular, we obtain that the $h^\ast $-polynomial of every dilation of a $d$-dimensional lattice polytope of degree $s$ has a real-rooted symmetric decomposition whenever the dilation factor $r$ satisfies $r\geq \max \{s,d+1-s\}$. Moreover, if the polytope is Gorenstein, then this decomposition is interlacing.


Author(s):  
Gennadiy Averkov ◽  
Christopher Borger ◽  
Ivan Soprunov

Abstract We present an algorithm for the classification of triples of lattice polytopes with a given mixed volume m in dimension 3. It is known that the classification can be reduced to the enumeration of so-called irreducible triples, the number of which is finite for fixed m. Following this algorithm, we enumerate all irreducible triples of normalized mixed volume up to 4 that are inclusion-maximal. This produces a classification of generic trivariate sparse polynomial systems with up to 4 solutions in the complex torus, up to monomial changes of variables. By a recent result of Esterov, this leads to a description of all generic trivariate sparse polynomial systems that are solvable by radicals.


10.37236/8626 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Florian Kohl ◽  
McCabe Olsen

Given a family of lattice polytopes, a common endeavor in Ehrhart theory is the classification of those polytopes in the family that are Gorenstein, or more generally level. In this article, we consider these questions for ${\boldsymbol s}$-lecture hall polytopes, which are a family of simplices arising from $\mathbf {s}$-lecture hall partitions. In particular, we provide concrete classifications for both of these properties purely in terms of ${\boldsymbol s}$-inversion sequences. Moreover, for a large subfamily of ${\boldsymbol s}$-lecture hall polytopes, we provide a more geometric classification of the Gorenstein property in terms of  its tangent cones. We then show how one can use the classification of level ${\boldsymbol s}$-lecture hall polytopes to construct infinite families of level ${\boldsymbol s}$-lecture hall polytopes, and to describe level ${\boldsymbol s}$-lecture hall polytopes in small dimensions.


Sign in / Sign up

Export Citation Format

Share Document