scholarly journals Free Subgroups of the Fundamental Group of the Hawaiian Earring

1999 ◽  
Vol 219 (2) ◽  
pp. 598-605 ◽  
Author(s):  
Katsuya Eda
1992 ◽  
Vol 02 (01) ◽  
pp. 33-37 ◽  
Author(s):  
BART DE SMIT

The Hawaiian earring is a topological space which is a countably infinite union of circles, that are all tangent to a single line at the same point, and whose radii tend to zero. In this note a short proof is given of a result of J.W. Morgan and I. Morrison that describes the fundamental group of this space. It is also shown that this fundamental group is not a free group, unlike the fundamental group of a wedge of an arbitrary number of circles.


Filomat ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 1403-1429
Author(s):  
Zadeh Ayatollah ◽  
Fatemeh Ebrahimifar ◽  
Mohammad Mahmoodi

Suppose ? is a nonzero cardinal number, I is an ideal on arc connected Topological space X, and B?I(X) is the subgroup of ?1(X) (the first fundamental group of X) generated by homotopy classes of ?_I loops. The main aim of this text is to study B?I(X)s and compare them. Most interest is in ? ? {?,c} and I ? {Pfin(X), {?}}, where Pfin(X) denotes the collection of all finite subsets of X. We denote B?{?}(X) with B?(X). We prove the following statements: for arc connected topological spaces X and Y if B?(X) is isomorphic to B?(Y) for all infinite cardinal number ?, then ?1(X) is isomorphic to ?1(Y); there are arc connected topological spaces X and Y such that ?1(X) is isomorphic to ?1(Y) but B?(X) is not isomorphic to B?(Y); for arc connected topological space X we have B?(X) ? Bc(X) ? ?1(X); for Hawaiian earring X, the sets B?(X), Bc(X), and ?1(X) are pairwise distinct. So B?(X)s and B?I(X)s will help us to classify the class of all arc connected topological spaces with isomorphic fundamental groups.


2013 ◽  
Vol 50 (1) ◽  
pp. 31-50
Author(s):  
C. Zhang

The purpose of this article is to utilize some exiting words in the fundamental group of a Riemann surface to acquire new words that are represented by filling closed geodesics.


Author(s):  
Ahmed Abbes ◽  
Michel Gros

This chapter continues the construction and study of the p-adic Simpson correspondence and presents the global aspects of the theory of representations of the fundamental group and the torsor of deformations. After fixing the notation and general conventions, the chapter develops preliminaries and then introduces the results and complements on the notion of locally irreducible schemes. It also fixes the logarithmic geometry setting of the constructions and considers a number of results on the Koszul complex. Finally, it develops the formalism of additive categories up to isogeny and describes the inverse systems of a Faltings ringed topos, with a particular focus on the notion of adic modules and the finiteness conditions adapted to this setting. The chapter rounds up the discussion with sections on Higgs–Tate algebras and Dolbeault modules.


2021 ◽  
pp. 1-8
Author(s):  
DANIEL KASPROWSKI ◽  
MARKUS LAND

Abstract Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.


2019 ◽  
Vol 31 (3) ◽  
pp. 769-777
Author(s):  
Jairo Z. Gonçalves

Abstract Let k be a field, let {\mathfrak{A}_{1}} be the k-algebra {k[x_{1}^{\pm 1},\dots,x_{s}^{\pm 1}]} of Laurent polynomials in {x_{1},\dots,x_{s}} , and let {\mathfrak{A}_{2}} be the k-algebra {k[x,y]} of polynomials in the commutative indeterminates x and y. Let {\sigma_{1}} be the monomial k-automorphism of {\mathfrak{A}_{1}} given by {A=(a_{i,j})\in GL_{s}(\mathbb{Z})} and {\sigma_{1}(x_{i})=\prod_{j=1}^{s}x_{j}^{a_{i,j}}} , {1\leq i\leq s} , and let {\sigma_{2}\in{\mathrm{Aut}}_{k}(k[x,y])} . Let {D_{i}} , {1\leq i\leq 2} , be the ring of fractions of the skew polynomial ring {\mathfrak{A}_{i}[X;\sigma_{i}]} , and let {D_{i}^{\bullet}} be its multiplicative group. Under a mild restriction for {D_{1}} , and in general for {D_{2}} , we show that {D_{i}^{\bullet}} , {1\leq i\leq 2} , contains a free subgroup. If {i=1} and {s=2} , we show that a noncentral normal subgroup N of {D_{1}^{\bullet}} contains a free subgroup.


Sign in / Sign up

Export Citation Format

Share Document