Thermodynamic properties of silicides. III. Specific energy of combustion in fluorine of a hyperstoichiometric molybdenum disilicide. The standard molar enthalpy of formation ΔfHom of MoSi2.067±0.002 at the temperature 298.15 K

1993 ◽  
Vol 25 (11) ◽  
pp. 1333-1343 ◽  
Author(s):  
P.A.G. O'Hare
2004 ◽  
Vol 59 (11) ◽  
pp. 825-828
Author(s):  
L. Rycerz ◽  
E. Ingier-Stocka ◽  
B. Ziolek ◽  
S. Gadzuric ◽  
M. Gaune-Escard

The heat capacity of solid and liquid LaBr3 was measured by Differential Scanning Calorimetry (DSC) in the temperature range 300 - 1100 K. The obtained results were fitted by a polynomial temperature dependence. The enthalpy of fusion of LaBr3 was also measured. By combination of these results with the literature data on the entropy, S0m (LaBr3, s, 298.15 K) and the standard molar enthalpy of formation, ΔformH0m (LaBr3, s, 298.15 K), the thermodynamic functions of lanthanum tribromide were calculated up to 1300 K


1988 ◽  
Vol 66 (4) ◽  
pp. 620-625 ◽  
Author(s):  
I.R. Tasker ◽  
P. A. G. O'Hare ◽  
Brett M. lewis ◽  
G. K. Johnson ◽  
E. H. P. Cordfunke

Three precise calorimetric methods, viz., low-temperature adiabatic, high-temperature drop, and solution-reaction, have been used to determine as a function of temperature the key chemical thermodynamic properties of a pure sample of schoepite, UO2(OH)2•H2O. The following results have been obtained at the standard reference temperature T = 298.15 K: standard molar enthalpy of formation [Formula: see text] molar heat capacity [Formula: see text] and the standard molar entropy [Formula: see text] The molar enthalpy increments relative to 298.15 K and the molar heat capacity are given by the polynomials: [Formula: see text] and [Formula: see text], where 298.15 K < T < 400 K. The present result for [Formula: see text] at 298.15 K has been combined with three other closely-agreeing values from the literature to give a recommended weighted mean [Formula: see text] from which is calculated the standard Gibbs energy of formation [Formula: see text] at 298.15 K. Complete thermodynamic properties of schoepite are tabulated from 298.15 to 423.15 K.


1987 ◽  
Vol 19 (10) ◽  
pp. 1117-1120 ◽  
Author(s):  
E.H.P Cordfunke ◽  
W Ouweltjes ◽  
P.Van Vlaanderen

Sign in / Sign up

Export Citation Format

Share Document