Heat Capacity and Thermodynamic Properties of LaBr3 at 300 – 1100 K

2004 ◽  
Vol 59 (11) ◽  
pp. 825-828
Author(s):  
L. Rycerz ◽  
E. Ingier-Stocka ◽  
B. Ziolek ◽  
S. Gadzuric ◽  
M. Gaune-Escard

The heat capacity of solid and liquid LaBr3 was measured by Differential Scanning Calorimetry (DSC) in the temperature range 300 - 1100 K. The obtained results were fitted by a polynomial temperature dependence. The enthalpy of fusion of LaBr3 was also measured. By combination of these results with the literature data on the entropy, S0m (LaBr3, s, 298.15 K) and the standard molar enthalpy of formation, ΔformH0m (LaBr3, s, 298.15 K), the thermodynamic functions of lanthanum tribromide were calculated up to 1300 K

2002 ◽  
Vol 57 (5) ◽  
pp. 215-220 ◽  
Author(s):  
L. Rycerz ◽  
M. Gaune-Escard

The heat capacity of solid EuCl3 was measured by differential scanning calorimetry from 300 K up to the melting temperature, and beyond. These results were compared with literature data and fitted by a polynomial temperature dependence. The enthalpy of EuCl3 fusion was measured. Furthermore, by combination of these results with literature data on the entropy at 298.15 Sm0 (EuCl3, s, 298.15 K) and the standard molar enthalpy of formation of ∆form H0m (EuCl3, s, 298.15 K), the thermodynamic functions have been calculated up to 1300 K.


2002 ◽  
Vol 57 (1-2) ◽  
pp. 79-84
Author(s):  
L. Rycerz ◽  
M. Gaune-Escard

Heat capacities of solid SmCl3 and TmCl3 were measured by differential scanning calorimetry in the ternperature range from 300 K up to the respective melting temperatures. The heat capacity of liquid SmCl3 was also investigated. These results were compared with literature data and fitted by a polynomial temperature dependence. The temperature coefficients were given. Additionally, the enthalpy of fusion of SmCl3 was measured. Furthermore, by combination of these results with the literature data on the entropy at 298.15 K, S0m(LnCl3, s, 298.15 K) and the standard molar enthalpy of formation of Δform H0m(LnCl3,s, 298.15 K), the meruiodynaniic functions were calculated up to T = 1300 K.


2002 ◽  
Vol 57 (9-10) ◽  
pp. 79-84 ◽  
Author(s):  
L. Rycerz ◽  
M. Gaune-Escard

Heat capacities of solid SmCl3 and TmCl3 were measured by differential scanning calorimetry in the temperature range from 300 K up to the respective melting temperatures. The heat capacity of liquid SmCl3 was also investigated. These results were compared with literature data and fitted by a polynomial temperature dependence. The temperature coefficients were given. Additionally, the enthalpy of fusion of SmCl3 was measured. Furthermore, by combination of these results with the literature data on the entropy at 298.15 K, S0m (LnCl3, s, 298.15 K) and the standard molar enthalpy of formation of ΔformH0m (LnCl3, s, 298.15 K), the thermodynamic functions were calculated up to T = 1300 K.


2001 ◽  
Vol 56 (9-10) ◽  
pp. 647-652 ◽  
Author(s):  
F. Da Silva ◽  
L. Rycerz ◽  
M. Gaune-Escard

Abstract The temperature and enthalpy of the phase transition and fusion of EuCl2 were determined and found to be 1014 K, 11.5 kJ mol-1and 1125 K, 18.7 kJ mol-1 , respectively. Addition­ ally, the heat capacity of solid EuCl2 was measured by Differential Scanning Calorimetry in the temperature range 306 -1085 K. The results were fitted to the linear equation C0p,m = (68.27 + 0.0255 T/K) J mol -1 K-1 in the temperature range 306 -900 K. Due to discrepancies in the liter­ ature on the temperature of fusion of EuCl2, the determination of the NaCl-EuCl2 phase diagram was repeated. It consists of a simple eutectic equilibrium at Teut = 847 K with x(EuCl2) = 0.49.


1988 ◽  
Vol 66 (4) ◽  
pp. 620-625 ◽  
Author(s):  
I.R. Tasker ◽  
P. A. G. O'Hare ◽  
Brett M. lewis ◽  
G. K. Johnson ◽  
E. H. P. Cordfunke

Three precise calorimetric methods, viz., low-temperature adiabatic, high-temperature drop, and solution-reaction, have been used to determine as a function of temperature the key chemical thermodynamic properties of a pure sample of schoepite, UO2(OH)2•H2O. The following results have been obtained at the standard reference temperature T = 298.15 K: standard molar enthalpy of formation [Formula: see text] molar heat capacity [Formula: see text] and the standard molar entropy [Formula: see text] The molar enthalpy increments relative to 298.15 K and the molar heat capacity are given by the polynomials: [Formula: see text] and [Formula: see text], where 298.15 K < T < 400 K. The present result for [Formula: see text] at 298.15 K has been combined with three other closely-agreeing values from the literature to give a recommended weighted mean [Formula: see text] from which is calculated the standard Gibbs energy of formation [Formula: see text] at 298.15 K. Complete thermodynamic properties of schoepite are tabulated from 298.15 to 423.15 K.


2015 ◽  
Vol 59 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jolanta Tomaszewska-Gras ◽  
Sławomir Bakier ◽  
Kamila Goderska ◽  
Krzysztof Mansfeld

Abstract Thermodynamic properties of selected honeys: glass transition temperature (Tg), the change in specifi c heat capacity (ΔCp), and enthalpy (ΔH) were analysed using differential scanning calorimetry (DSC) in relation to the composition i.e. water and sugar content. Glass transition temperatures (Tg) of various types of honey differed significantly (p<0.05) and ranged from -49.7°C (polyfloral) to -34.8°C (sunflower). There was a strong correlation between the Tg values and the moisture content in honey (r = -0.94). The degree of crystallisation of the honey also influenced the Tg values. It has been shown that the presence or absence of sugar crystals influenced the glass transition temperature. For the decrystallised honeys, the Tg values were 6 to 11°C lower than for the crystallised honeys. The more crystallised a honey was, the greater the temperature difference was between the decrystallised and crystallized honey. In conclusion, to obtain reliable DSC results, it is crucial to measure the glass transition after the complete liquefaction of honey.


Sign in / Sign up

Export Citation Format

Share Document