Construction of Second-Order TVD Schemes for Nonhomogeneous Hyperbolic Conservation Laws

2001 ◽  
Vol 172 (1) ◽  
pp. 261-297 ◽  
Author(s):  
Ll. Gascón ◽  
J.M. Corberán
2016 ◽  
Vol 54 (5) ◽  
pp. 2775-2798 ◽  
Author(s):  
Sofia Lindqvist ◽  
Peder Aursand ◽  
Tore Flåtten ◽  
Anders Aase Solberg

Analysis ◽  
2007 ◽  
Vol 27 (1) ◽  
Author(s):  
Yousef Hashem Zahran

The purpose of this paper is twofold. Firstly we carry out a modification of the finite volume WENO (weighted essentially non-oscillatory) scheme of Titarev and Toro [14] and [15].This modification is done by using two fluxes as building blocks in spatially fifth order WENO schemes instead of the second order TVD flux proposed by Titarev and Toro [14] and [15]. These fluxes are the second order TVD flux [19] and the third order TVD flux [20].Secondly, we propose to use these fluxes as a building block in spatially seventh order WENO schemes. The numerical solution is advanced in time by the third order TVD Runge–Kutta method. A way to extend these schemes to general systems of nonlinear hyperbolic conservation laws, in one and two dimension is presented. Systematic assessment of the proposed schemes shows substantial gains in accuracy and better resolution of discontinuities, particularly for problems involving long time evolution containing both smooth and non-smooth features.


A numerical technique, called a ‘weighted average flux’ (WAF) method, for the solution of initial-value problems for hyperbolic conservation laws is presented. The intercell fluxes are defined by a weighted average through the complete structure of the solution of the relevant Riemann problem. The aim in this definition is the achievement of higher accuracy without the need for solving ‘generalized’ Riemann problems or adding an anti-diffusive term to a given first-order upwind method. Second-order accuracy is proved for a model equation in one space dimension; for nonlinear systems second-order accuracy is supported by numerical evidence. An oscillation-free formulation of the method is easily constructed for a model equation. Applications of the modified technique to scalar equations and nonlinear systems gives results of a quality comparable with those obtained by existing good high resolution methods. An advantage of the present method is its simplicity. It also has the potential for efficiency, because it is well suited to the use of approximations in the solution of the associated Riemann problem. Application of WAF to multidimensional problems is illustrated by the treatment using dimensional splitting of a simple model problem in two dimensions.


Sign in / Sign up

Export Citation Format

Share Document