Two-dimensional dissipative and isotropic kinetic models, like the ones used in neutron transport theory, are considered. Especially, steady-states are expressed for constant opacity and damping, allowing to derive a scattering $S$-matrix and corresponding ``truly 2D well-balanced'' numerical schemes. A first scheme is obtained by directly implementing truncated Fourier-Bessel series, whereas another proceeds by applying an exponential modulation to a former, conservative, one. Consistency with the asymptotic damped parabolic approximation is checked for both algorithms. These findings are confirmed by means of practical benchmarks carried out on coarse Cartesian computational grids.