scholarly journals Center Manifolds for Infinite Dimensional Nonautonomous Differential Equations

1997 ◽  
Vol 141 (2) ◽  
pp. 356-399 ◽  
Author(s):  
C. Chicone ◽  
Y. Latushkin
2016 ◽  
Vol 29 (4) ◽  
pp. 1459-1485 ◽  
Author(s):  
Thai Son Doan ◽  
Kenneth J. Palmer ◽  
Martin Rasmussen

2008 ◽  
Vol 08 (03) ◽  
pp. 351-363 ◽  
Author(s):  
FRITZ COLONIUS ◽  
PETER E. KLOEDEN ◽  
MARTIN RASMUSSEN

The concept of a Morse decomposition consisting of nonautonomous sets is reviewed for linear cocycle mappings w.r.t. the past, future and all-time convergences. In each case, the set of accumulation points of the finite-time Lyapunov exponents corresponding to points in a nonautonomous set is shown to be an interval. For a finest Morse decomposition, the Morse spectrum is defined as the union of all of the above accumulation point intervals over the different nonautonomous sets in such a finest Morse decomposition. In addition, Morse spectrum is shown to be independent of which finest Morse decomposition is used, when more than one exists.


Author(s):  
Xiaopeng Chen ◽  
Jinqiao Duan

The decomposition of state spaces into dynamically different components is helpful for understanding dynamics of complex systems. A Conley-type decomposition theorem is proved for non-autonomous dynamical systems defined on a non-compact but separable state space. Specifically, the state space can be decomposed into a chain-recurrent part and a gradient-like part. This result applies to both non-autonomous ordinary differential equations on a Euclidean space (which is only locally compact), and to non-autonomous partial differential equations on an infinite-dimensional function space (which is not even locally compact). This decomposition result is demonstrated by discussing a few concrete examples, such as the Lorenz system and the Navier–Stokes system, under time-dependent forcing.


Sign in / Sign up

Export Citation Format

Share Document