variation of constants formula
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 25 (Spec. issue 1) ◽  
pp. 65-75
Author(s):  
Ali Sirma ◽  
Resat Kosker ◽  
Muzaffer Akat

In this study, we propose a numerical scheme for stochastic oscillators with additive noise obtained by the method of variation of constants formula using generalized numerical integrators. For both of the displacement and the velocity components, we show that the scheme has an order of 3/2 in one step convergence and a first order in overall convergence. Theoretical statements are supported by numerical experiments.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yonghui Xia ◽  
Hai Huang ◽  
Kit Ian Kou

<p style='text-indent:20px;'>Quaternion-valued differential equations (QDEs) is a new kind of differential equations. In this paper, an algorithm was presented for solving linear nonhomogeneous quaternionic-valued differential equations. The variation of constants formula was established for the nonhomogeneous quaternionic-valued differential equations. Moreover, several examples showed the feasibility of our algorithm. Finally, some open problems end this paper.</p>


2020 ◽  
Vol 99 (3) ◽  
pp. 62-74
Author(s):  
M. Akat ◽  
◽  
R. Kosker ◽  
A. Sirma ◽  
◽  
...  

In this paper, a numerical approach is proposed based on the variation-of-constants formula for the numerical discretization Langevin-type equations. Linear and non-linear cases are treated separately. The proofs of convergence have been provided for the linear case, and the numerical implementation has been executed for the non-linear case. The order one convergence for the numerical scheme has been shown both theoretically and numerically. The stability of the numerical scheme has been shown numerically and depicted graphically.


2020 ◽  
pp. 1-43
Author(s):  
Pierre Magal ◽  
Ousmane Seydi

Abstract In this paper, we extend to the non-Hille–Yosida case a variation of constants formula for a nonautonomous and nonhomogeneous Cauchy problems first obtained by Gühring and Räbiger. By using this variation of constants formula, we derive a necessary and sufficient condition for the existence of an exponential dichotomy for the evolution family generated by the associated nonautonomous homogeneous problem. We also prove a persistence result of the exponential dichotomy for small perturbations. Finally, we illustrate our results by considering two examples. The first example is a parabolic equation with nonlocal and nonautonomous boundary conditions, and the second example is an age-structured model that is a hyperbolic equation.


Author(s):  
Sergio Blanes ◽  
Fernando Casas ◽  
Cesáreo González ◽  
Mechthild Thalhammer

Abstract This work is devoted to the derivation of a convergence result for high-order commutator-free quasi-Magnus (CFQM) exponential integrators applied to nonautonomous linear Schrödinger equations; a detailed stability and local error analysis is provided for the relevant special case where the Hamilton operator comprises the Laplacian and a regular space-time-dependent potential. In the context of nonautonomous linear ordinary differential equations, CFQM exponential integrators are composed of exponentials involving linear combinations of certain values of the associated time-dependent matrix; this approach extends to nonautonomous linear evolution equations given by unbounded operators. An inherent advantage of CFQM exponential integrators over other time integration methods such as Runge–Kutta methods or Magnus integrators is that structural properties of the underlying operator family are well preserved; this characteristic is confirmed by a theoretical analysis ensuring unconditional stability in the underlying Hilbert space and the full order of convergence under low regularity requirements on the initial state. Due to the fact that convenient tools for products of matrix exponentials such as the Baker–Campbell–Hausdorff formula involve infinite series and thus cannot be applied in connection with unbounded operators, a certain complexity in the investigation of higher-order CFQM exponential integrators for Schrödinger equations is related to an appropriate treatment of compositions of evolution operators; an effective concept for the derivation of a local error expansion relies on suitable linearisations of the evolution equations for the exact and numerical solutions, representations by the variation-of-constants formula and Taylor series expansions of parts of the integrands, where the arising iterated commutators determine the regularity requirements on the problem data.


2018 ◽  
Vol 19 (3) ◽  
pp. 525
Author(s):  
José Vanterler da Costa Sousa ◽  
Edmundo Capelas de Oliveira

In this paper, we present and prove a new truncated V-fractional Taylor's formula using the truncated V-fractional variation of constants formula. In this sense, we present the truncated V-fractional Taylor's remainder by means of V-fractional integral, essential for analyzing and comparing the error, when approaching functions by polynomials. From these new results, some applications were made involving some inequalities, specifically, we generalize the Cauchy-Schwartz inequality.


2018 ◽  
Vol 68 (4) ◽  
pp. 889-920 ◽  
Author(s):  
Rodolfo Collegari ◽  
Márcia Federson ◽  
Miguel Frasson

Sign in / Sign up

Export Citation Format

Share Document