accumulation points
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 24)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Michael Hinz ◽  
Melissa Meinert

AbstractWe consider linear partial differential equations on resistance spaces that are uniformly elliptic and parabolic in the sense of quadratic forms and involve abstract gradient and divergence terms. Our main interest is to provide graph and metric graph approximations for their unique solutions. For families of equations with different coefficients on a single compact resistance space we prove that solutions have accumulation points with respect to the uniform convergence in space, provided that the coefficients remain bounded. If in a sequence of equations the coefficients converge suitably, the solutions converge uniformly along a subsequence. For the special case of local resistance forms on finitely ramified sets we also consider sequences of resistance spaces approximating the finitely ramified set from within. Under suitable assumptions on the coefficients (extensions of) linearizations of the solutions of equations on the approximating spaces accumulate or even converge uniformly along a subsequence to the solution of the target equation on the finitely ramified set. The results cover discrete and metric graph approximations, and both are discussed.


Author(s):  
Lei Guo ◽  
Zhibin Deng

We propose a new augmented Lagrangian (AL) method for solving the mathematical program with complementarity constraints (MPCC), where the complementarity constraints are left out of the AL function and treated directly. Two observations motivate us to propose this method: The AL subproblems are closer to the original problem in terms of the constraint structure; and the AL subproblems can be solved efficiently by a nonmonotone projected gradient method, in which we have closed-form solutions at each iteration. The former property helps us show that the proposed method converges globally to an M-stationary (better than C-stationary) point under MPCC relaxed constant positive linear dependence condition. Theoretical comparison with existing AL methods demonstrates that the proposed method is superior in terms of the quality of accumulation points and the strength of assumptions. Numerical comparison, based on problems in MacMPEC, validates the theoretical results.


Author(s):  
N. Pilan ◽  
M. Cavenago ◽  
G. Chitarin ◽  
A. De Lorenzi ◽  
C.L. Fontana ◽  
...  
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sebastian Eterović ◽  
Fernando Figueroa ◽  
Giancarlo Urzúa

Abstract We present various results about the combinatorial properties of line arrangements in terms of the Chern numbers of the corresponding log surfaces. This resembles the study of the geography of surfaces of general type. We prove some new results about the distribution of Chern slopes, we show a connection between their accumulation points and the accumulation points of linear H-constants on the plane, and we conclude with two open problems in relation to geography over ℚ and over ℂ.


Author(s):  
Matthias Hofmann ◽  
James B. Kennedy ◽  
Delio Mugnolo ◽  
Marvin Plümer

AbstractWe establish metric graph counterparts of Pleijel’s theorem on the asymptotics of the number of nodal domains $$\nu _n$$ ν n of the nth eigenfunction(s) of a broad class of operators on compact metric graphs, including Schrödinger operators with $$L^1$$ L 1 -potentials and a variety of vertex conditions as well as the p-Laplacian with natural vertex conditions, and without any assumptions on the lengths of the edges, the topology of the graph, or the behaviour of the eigenfunctions at the vertices. Among other things, these results characterise the accumulation points of the sequence $$(\frac{\nu _n}{n})_{n\in \mathbb {N}}$$ ( ν n n ) n ∈ N , which are shown always to form a finite subset of (0, 1]. This extends the previously known result that $$\nu _n\sim n$$ ν n ∼ n generically, for certain realisations of the Laplacian, in several directions. In particular, in the special cases of the Laplacian with natural conditions, we show that for graphs any graph with pairwise commensurable edge lengths and at least one cycle, one can find eigenfunctions thereon for which $${\nu _n}\not \sim {n}$$ ν n ≁ n ; but in this case even the set of points of accumulation may depend on the choice of eigenbasis.


Author(s):  
David Mayne ◽  
Richard Vinter

AbstractIn an earlier analysis of strong variation algorithms for optimal control problems with endpoint inequality constraints, Mayne and Polak provided conditions under which accumulation points satisfy a condition requiring a certain optimality function, used in the algorithms to generate search directions, to be nonnegative for all controls. The aim of this paper is to clarify the nature of this optimality condition, which we call the first-order minimax condition, and of a related integrated form of the condition, which, also, is implicit in past algorithm convergence analysis. We consider these conditions, separately, when a pathwise state constraint is, and is not, included in the problem formulation. When there are no pathwise state constraints, we show that the integrated first-order minimax condition is equivalent to the minimum principle and that the minimum principle (and equivalent integrated first-order minimax condition) is strictly stronger than the first-order minimax condition. For problems with state constraints, we establish that the integrated first-order minimax condition and the minimum principle are, once again, equivalent. But, in the state constrained context, it is no longer the case that the minimum principle is stronger than the first-order minimax condition, or vice versa. An example confirms the perhaps surprising fact that the first-order minimax condition is a distinct optimality condition that can provide information, for problems with state constraints, in some circumstances when the minimum principle fails to do so.


2021 ◽  
Vol 9 (1) ◽  
pp. 164-170
Author(s):  
Y. Gal ◽  
M. Zabolotskyi ◽  
M. Mostova

The Blaschke products form an important subclass of analytic functions on the unit disc with bounded Nevanlinna characteristic and also are meromorphic functions on $\mathbb{C}$ except for the accumulation points of zeros $B(z)$. Asymptotics and estimates of the logarithmic derivative of meromorphic functions play an important role in various fields of mathematics. In particular, such problems in Nevanlinna's theory of value distribution were studied by Goldberg A.A., Korenkov N.E., Hayman W.K., Miles J. and in the analytic theory of differential equations -- by Chyzhykov I.E., Strelitz Sh.I. Let $z_0=1$ be the only boundary point of zeros $(a_n)$ %=1-r_ne^{i\psi_n},$ $-\pi/2+\eta<\psi_n<\pi/2-\eta,$ $r_n\to0+$ as $n\to+\infty,$ of the Blaschke product $B(z);$ $\Gamma_m=\bigcup\limits_{j=1}^{m}\{z:|z|<1,\mathop{\text{arg}}(1-z)=-\theta_j\}=\bigcup\limits_{j=1}^{m}l_{\theta_j},$ $-\pi/2+\eta<\theta_1<\theta_2<\ldots<\theta_m<\pi/2-\eta,$ be a finite system of rays, $0<\eta<1$; $\upsilon(t)$ be continuous on $[0,1)$, $\upsilon(0)=0$, slowly increasing at the point 1 function, that is $\upsilon(t)\sim\upsilon\left({(1+t)}/2\right),$ $t\to1-;$ $n(t,\theta_j;B)$ be a number of zeros $a_n=1-r_ne^{i\theta_j}$ of the product $B(z)$ on the ray $l_{\theta_j}$ such that $1-r_n\leq t,$ $0<t<1.$ We found asymptotics of the logarithmic derivative of $B(z)$ as $z=1-re^{-i\varphi}\to1,$ $-\pi/2<\varphi<\pi/2,$ $\varphi\neq\theta_j,$ under the condition that zeros of $B(z)$ lay on $\Gamma_m$ and $n(t,\theta_j;B)\sim \Delta_j\upsilon(t),$ $t\to1-,$ for all $j=\overline{1,m},$ $0\leq\Delta_j<+\infty.$ We also considered the inverse problem for such $B(z).$


Sign in / Sign up

Export Citation Format

Share Document