Geochemical Characterization of Late Pleistocene and Holocene Tephra Layers from the Basin of Mexico, Central Mexico

1998 ◽  
Vol 50 (1) ◽  
pp. 90-106 ◽  
Author(s):  
Beatriz Ortega-Guerrero ◽  
Anthony J. Newton

In order to aid palaeoenvironmental research of Late Pleistocene and Holocene deposits of central Mexico, tephra layers collected from the sediments of the Texcoco and Chalco sub-basins, in the southern part of the Basin of Mexico, are geochemically characterized and used as stratigraphic markers. The tephra layers range in composition from basaltic andesites to rhyolites and are calc-alkaline. The tephras range in age from >34,000 to ca. 260014C yr B.P. New names are used informally to designate correlated tephras. The Tlahuac tephra is present in Chalco, at a depth of 18 m; in the southeastern part of Texcoco, at a depth of around 10 m; and at the Tlapacoya archaeological site, where it had been mistakenly described as basaltic. This basalt–andesite tephra is dated to at least 34,00014C yr B.P. The Tlapacoya 1 tephra is dated to between 15,020 ± 450 and 14,430 ± 190 yr B.P. and is present in all Chalco sections. The Tlapacoya 2 tephra corresponds to the previously described “pomez gruesa con fragmentos de andesita” (ca. 14,400 yr B.P.) and is present in all Chalco and Texcoco sections. The likely source of these three tephras is the volcano Popocatepetl. Tephra II at Chalco dates to 12,520 ± 135 yr B.P. and correlates with the Upper Toluca Pumice from Nevado de Toluca volcano. These represent the first geochemical glass-shard analysis of tephras from the Basin of Mexico, and so further research is necessary before a reliable tephrochronology can be established.

Radiocarbon ◽  
2012 ◽  
Vol 54 (3-4) ◽  
pp. 351-358 ◽  
Author(s):  
Mitsuru Okuno ◽  
Masayuki Torii ◽  
Hideto Naruo ◽  
Yoko Saito-Kokubu ◽  
Tetsuo Kobayashi

Four late Pleistocene tephra layers—Tane I (Tn1), II (Tn2), III (Tn3), and IV (Tn4) in ascending order—are intercalated between widespread tephras, Kikai-Tozurahara (K-Tz: 95 ka) and Aira-Tn (AT: 30 cal kBP), on Tanegashima Island, in southern Japan. Paleolithic ruins such as the Yokomine C and Tatikiri archaeological sites were excavated from the loam layer between the Tn4 and Tn3 tephras. To refine the chronological framework on the island, we conducted accelerator mass spectrometry (AMS) radiocarbon dating for 2 paleosol and 6 charcoal samples related with the late Pleistocene tephras and the Yokomine C archaeological site. The obtained 14C dates are consistent with the stratigraphy in calendar years, 33 cal kBP for Tn4, 40 cal kBP for Tn3, and >50 cal kBP for Tn2 and Tn1. The charcoal dates from Yokomine C, 32–38 cal kBP, not only constrain the age of Tn4 and Tn3 ashes, but also serve as a possible date for the site. We also measured the major element compositions of volcanic glass shards with EDS-EPMA to characterize these tephras. Although we could not find a possible correlative for Tn3 and Tn4 ashes using major element oxides of the glass shards, i.e. 75–76 wt% in SiO2, the glass chemistry obtained in this study will be valuable in correlating these tephras with their source volcanoes in the near future.


CATENA ◽  
2021 ◽  
Vol 196 ◽  
pp. 104914
Author(s):  
Gorica Veselinović ◽  
Dragana Životić ◽  
Kristina Penezić ◽  
Milica Kašanin-Grubin ◽  
Nevenka Mijatović ◽  
...  

2019 ◽  
Vol 502 ◽  
pp. 108-118 ◽  
Author(s):  
Jacek Skurzyński ◽  
Zdzisław Jary ◽  
Jerzy Raczyk ◽  
Piotr Moska ◽  
Bartosz Korabiewski ◽  
...  

2016 ◽  
Vol 75 (18) ◽  
Author(s):  
María del Sol Hernández-Bernal ◽  
Juan Morales ◽  
Pedro Corona-Chávez ◽  
Avto Goguitchaichvili ◽  
Francisco Bautista

Archaeometry ◽  
2018 ◽  
Vol 60 (5) ◽  
pp. 898-914 ◽  
Author(s):  
J. M. Capriles ◽  
N. Tripcevich ◽  
A. E. Nielsen ◽  
M. D. Glascock ◽  
J. Albarracin-Jordan ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Mariana Andrade ◽  
Ricardo S. Ramalho ◽  
Adriano Pimentel ◽  
Armand Hernández ◽  
Steffen Kutterolf ◽  
...  

Lacustrine sequences from active volcanic settings usually hold a rich and continuous record of tephra layers, providing a critical source of information to reconstruct a most complete eruptive history of a region. Lake sedimentary records on volcanic islands are particularly useful as the typical small size of these islands and their steep subaerial and submarine slopes lead to a lower preservation of potential erodible pyroclastic deposits. Here we explore the lacustrine sedimentary record of Lagoa da Lomba, a crater lake in the central upland area of Flores Island (Azores), to gain insight into the recent eruptive history of this island. The strategic location of Lagoa da Lomba, half distance between the two clusters of recent volcanic activity of the island, together with its long-lasting record, back to 23.52 cal kyr BP, makes this lake a privileged site to investigate the Holocene volcanic history of Flores. Based on a detailed stratigraphic characterization of sediments from a lake transect of three cores, supported by glass shard geochemistry and radiocarbon dating, we recognized four Holocene eruptive events taking place between 6.28 and 2.36 cal kyr BP, demonstrating that the Holocene volcanic activity at Flores Island may have lasted longer than previously reported. Glass shard geochemistry from the different tephra layers suggests three populations, basaltic to trachybasaltic in composition, where the last eruption is the least evolved endmember. Two of the four eruptive events correlate with subaerially-exposed pyroclastic sequences, in terms of stratigraphy and geochemistry. The most recent event recorded at Lagoa da Lomba was constrained to 3.66 – 2.36 cal kyr BP and linked to an eruption sourced from Lagoa Comprida Volcanic System. The second most recent eruptive event was sourced from Lagoa Funda Volcanic System and dated at 3.66 cal kyr BP. Our observations show that Flores experienced vigorous volcanic activity during the Late Holocene. Therefore, contrary to what is assumed, the possibility of future eruptions should be properly considered, and the volcanic hazard here should not be underestimated. Moreover, we highlight the importance of tephrostratigraphy in recent lake sediments to reconstruct past volcanic activity, especially at small volcanic islands, such as Flores, where exposure is poor due to erosion within the limited subaerial area and the dense vegetation.


Sign in / Sign up

Export Citation Format

Share Document