Combined rock-magnetic and geochemical characterization of Angangueo mining district, central Mexico

2016 ◽  
Vol 75 (18) ◽  
Author(s):  
María del Sol Hernández-Bernal ◽  
Juan Morales ◽  
Pedro Corona-Chávez ◽  
Avto Goguitchaichvili ◽  
Francisco Bautista
2011 ◽  
Vol 108 (1) ◽  
pp. 21-26 ◽  
Author(s):  
L. Arenas ◽  
M. Ortega ◽  
M.J. García-Martínez ◽  
E. Querol ◽  
J.F. Llamas

1998 ◽  
Vol 50 (1) ◽  
pp. 90-106 ◽  
Author(s):  
Beatriz Ortega-Guerrero ◽  
Anthony J. Newton

In order to aid palaeoenvironmental research of Late Pleistocene and Holocene deposits of central Mexico, tephra layers collected from the sediments of the Texcoco and Chalco sub-basins, in the southern part of the Basin of Mexico, are geochemically characterized and used as stratigraphic markers. The tephra layers range in composition from basaltic andesites to rhyolites and are calc-alkaline. The tephras range in age from >34,000 to ca. 260014C yr B.P. New names are used informally to designate correlated tephras. The Tlahuac tephra is present in Chalco, at a depth of 18 m; in the southeastern part of Texcoco, at a depth of around 10 m; and at the Tlapacoya archaeological site, where it had been mistakenly described as basaltic. This basalt–andesite tephra is dated to at least 34,00014C yr B.P. The Tlapacoya 1 tephra is dated to between 15,020 ± 450 and 14,430 ± 190 yr B.P. and is present in all Chalco sections. The Tlapacoya 2 tephra corresponds to the previously described “pomez gruesa con fragmentos de andesita” (ca. 14,400 yr B.P.) and is present in all Chalco and Texcoco sections. The likely source of these three tephras is the volcano Popocatepetl. Tephra II at Chalco dates to 12,520 ± 135 yr B.P. and correlates with the Upper Toluca Pumice from Nevado de Toluca volcano. These represent the first geochemical glass-shard analysis of tephras from the Basin of Mexico, and so further research is necessary before a reliable tephrochronology can be established.


Minerals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 298 ◽  
Author(s):  
Francesco Putzolu ◽  
Armando Piccolo Papa ◽  
Nicola Mondillo ◽  
Maria Boni ◽  
Giuseppina Balassone ◽  
...  

The Abruzzi bauxite district includes the deposits located on the Campo Felice plateau and those of the Monti d’Ocre, which had been mined in the first part of the 20th century. Bauxite is of the karst type, with textures ranging between oolitic and oolitic-conglomeratic, the latter suggesting a partial reworking of evolved lateritic soils. The high contents of Al2O3 and Fe2O3 (average values 53.76 and 21.76 wt %, respectively) are associated with the presence of boehmite, hematite, and minor goethite. SiO2 and TiO2 have average values of 7.79 and 2.75 wt %, corresponding to the presence of kaolinite, anatase and rutile. Among the minor so-called “bauxitophile” elements V, Co, Ni, Cr and Zr, the most enriched is Cr, with an average value of 0.07 wt %. Nickel has an average value of 210.83 ppm. Vanadium shows an average value of 266.57 ppm, whereas the average Co concentration is 35.89 ppm. The total rare earth elements (REE) concentration in the sampled bauxite sites is variable between ca. 700 and 550 ppm. Among REEs, the most abundant element is Ce, with Ce anomalies commonly associated with authigenic REE-fluoro-carbonates, probably produced after the REEs remobilization from primary detrital minerals and their precipitation in neo-formed phases during the bauxitization process. Scandium and Ga occur in small amounts (57 and 60 ppm, respectively), but geochemical proxies of their remobilization and uptake in neo-formed minerals (Fe- and Al-(hydr)oxides, respectively) have been observed. The mean Eu/Eu* and Al2O3/TiO2 ratios and the Ni-Cr contents of the Abruzzi bauxites suggest that the parent rock of these deposits was a material of acid affinity, likely corresponding to volcanic tephra or eolic loess-type sands.


2016 ◽  
Author(s):  
Antonio Lanzirotti ◽  
◽  
Stephen R. Sutton ◽  
Matt Newville ◽  
Jeffrey P. Fitts ◽  
...  

2020 ◽  
Author(s):  
Nathalia Pineda rodriguez ◽  
◽  
Vanessa Colás ◽  
Vanessa Colás ◽  
José María González-Jiménez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document