Gauss–NEwton Method: Least Squares, Relation to Newton’s Method

2006 ◽  
pp. 733-738
Author(s):  
William R. Esposito ◽  
Christodoulos A. Floudas
2009 ◽  
Vol 21 (5) ◽  
pp. 1415-1433 ◽  
Author(s):  
P.-A. Absil ◽  
M. Ishteva ◽  
L. De Lathauwer ◽  
S. Van Huffel

Newton's method for solving the matrix equation [Formula: see text] runs up against the fact that its zeros are not isolated. This is due to a symmetry of F by the action of the orthogonal group. We show how differential-geometric techniques can be exploited to remove this symmetry and obtain a “geometric” Newton algorithm that finds the zeros of F. The geometric Newton method does not suffer from the degeneracy issue that stands in the way of the original Newton method.


2004 ◽  
Vol 126 (2) ◽  
pp. 404-407 ◽  
Author(s):  
Lars Johansson and ◽  
Ha˚kan Wettergren

In this paper an algorithm is developed where Reynolds’ equation, equilibrium equations and non-negativity of pressure are formulated as a system of equations, which are not differentiable in the usual sense. This system is then solved using Pang’s Newton method for B-differentiable equations.


2018 ◽  
Vol 34 (2) ◽  
pp. 135-142
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
YEOL JE CHO ◽  
SANTHOSH GEORGE ◽  
◽  
...  

The aim of this paper is to extend the applicability of the Gauss-Newton’s method for solving nonlinear least squares problems using our new idea of restricted convergence domains. The new technique uses tighter Lipschitz functions than in earlier papers leading to a tighter ball convergence analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ababu Teklemariam Tiruneh ◽  
W. N. Ndlela ◽  
S. J. Nkambule

An iterative formula based on Newton’s method alone is presented for the iterative solutions of equations that ensures convergence in cases where the traditional Newton Method may fail to converge to the desired root. In addition, the method has super-quadratic convergence of order 2.414 (i.e., ). Newton method is said to fail in certain cases leading to oscillation, divergence to increasingly large number, or offshooting away to another root further from the desired domain or offshooting to an invalid domain where the function may not be defined. In addition when the derivative at the iteration point is zero, Newton method stalls. In most of these cases, hybrids of several methods such as Newton, bisection, and secant methods are suggested as substitute methods and Newton method is essentially blended with other methods or altogether abandoned. This paper argues that a solution is still possible in most of these cases by the application of Newton method alone without resorting to other methods and with the same computational effort (two functional evaluations per iteration) like the traditional Newton method. In addition, the proposed modified formula based on Newton method has better convergence characteristics than the traditional Newton method.


2012 ◽  
Vol 490-495 ◽  
pp. 51-55
Author(s):  
Liang Fang

In this paper, we present a variant of Newton method with order of convergence eight for solving nonlinear equations. The method is free from second derivatives. It requires three evaluations of the functions and two evaluations of derivatives in each step. Therefore the efficiency index of the presented method is 1.5157 which is better than that of classical Newton’s method 1.4142. Some numerical experiments illustrate that the proposed method is more efficient and performs better than classical Newton's method.


Sign in / Sign up

Export Citation Format

Share Document