Journal of Tribology
Latest Publications


TOTAL DOCUMENTS

5048
(FIVE YEARS 476)

H-INDEX

90
(FIVE YEARS 7)

Published By Asme International

0742-4787

2022 ◽  
pp. 1-19
Author(s):  
Fan Zhang ◽  
Nicolas Fillot ◽  
Rudolf Hauleitner ◽  
Guillermo Morales Espejel

Abstract A first cavitation modeling with thermal effects for oil/refrigerant solutions lubricated ElastoHydroDynamic (EHD) point contacts is reported in this work. The solubility of the oil/refrigerant system is introduced into the Generalized Reynolds equation coupled with the elasticity equation and the energy conservation equation. The numerical results show a very good agreement with the published experimental results concerning film thickness prediction. Moreover, the present model describes the cavitation region on a physical basis. A discussion with other cavitation models from the literature is proposed. It puts into light the necessity of taking into account the solubility of the refrigerant into oil for such problems. Compared to pure oil, oil/refrigerant solutions can potentially reduce the amount of liquid oil for the next contact due to its higher cavitation intensity.


2022 ◽  
pp. 1-32
Author(s):  
Zhaoning Sun ◽  
Xiaohai Li

Abstract A Finite Element Analysis of a rigid sphere contact with a deformable elastic-plastic plat called indentation model is studied. The numerical results are applied on the rough surfaces contact of the GW model. A series of the relationships of the rough surfaces contact parameters are obtained. The contact parameters of the indentation model and the flattening model are compared in detail and the reasons for their differences are analyzed. In the case of single asperity contact, for ω/ωc > 1, the Indentation model reaches the initial plastic yield while the flattening model is ω/ωc = 1. In ω/ωc = 10, the plastic yield reaches the contact surface for the first time, and the corresponding point of ψ = 0.5 the flattening model is relatively earlier in . The contact parameters of rough surface in different plasticity indexes are compared again. On the point of ω/ωc = 6, the contact parameters of the flattening model and the indentation model coincide perfectly. For 0.5 < ψ < 4, the difference between the parameters curves become larger and larger. To the point of ψ = 4, when the distance difference reaches the maximum, it begins to decrease until the two curves are close to coincide again. The dimensionless elastic-plastic contact hardness is introduced. The relation between real contact area and the contact pressure of the indentation model can be acquired quickly. The results show that the geometric shape of deformable contact parts has an important effect on the contact parameters, especially for the extension of plastic deformation region within a specific range of plasticity index.


2022 ◽  
pp. 1-17
Author(s):  
Xiangdong Chang ◽  
Peng Yu-Xing ◽  
Deqiang Cheng ◽  
Zhencai Zhu ◽  
Dagang Wang ◽  
...  

Abstract Surface wear is one of the major causes of damage to wire ropes in multi-layer winding systems. This damage leads to performance degradation and affects the service safety of wire rope. To reveal the wear evolution and the performance degradation of wire rope in service, the correlations between the wear characteristic parameters and the residual strength were investigated. The results show that the variation in the wear parameters is affected by the wear distribution and the structure of the wire rope. The main wear mechanisms between wire ropes are adhesion wear and abrasive wear. Different wear parameters should be combined to evaluate the wear state of the wire rope. The tensile temperature rise could accurately reflect the wear evolution of the in-service wire rope under the condition of a large wear degree. The negative correlation between the residual strength and the wear area of the damaged rope samples is the strongest.


2022 ◽  
pp. 1-8
Author(s):  
Wanjun Xu ◽  
Shanhui Zhao ◽  
Zhengyang Geng ◽  
Miaomiao Niu

Abstract In order to reduce the dependence of accuracy on the number of grids in the Ausas cavitation algorithm, a modified Ausas algorithm was presented. By modifying the mass-conservative Reynolds equation with the concept of linear complementarity problems (LCPs), the coupling of film thickness h and density ratio θ disappeared. The modified equation achieved a new discrete scheme that ensured a complete second-order-accurate central difference scheme for the full film region, avoiding a hybrid-order-accurate discrete scheme. A journal bearing case was studied to show the degree of accuracy improvement and the calculation time compared to a standard LCP solver. The results showed that the modified Ausas algorithm made the asymptotic and convergent behavior with the increase of nodes disappear and allowed for the use of coarse meshes to obtain sufficient accuracy. The calculation time of the modified Ausas algorithm is shorter than the LCP solver (Lemke's pivoting algorithm) for middle and large scale problems.


2021 ◽  
pp. 1-29
Author(s):  
Ali Yalpanian ◽  
Raynald Guilbault

Abstract This study allows contact models based on semi-analytical methods including the impacts of thermoelastic deformations in contacts of finite dimension bodies. The proposed method controls heat flows crossing free boundaries. A comparison with FEA reveals that the proposed method can reduce the calculation times by more than 98%. The paper introduces the thermoelasticity effects into thermal-elastohydrodynamic lubrication (TEHL) modeling of line contact problems. The analysis reveals that including thermoelastic deformations changes the pressure profile and tends to localize the pressure close to the distribution center. Compared to TEHL simulations, the examined configurations caused an overall increase in the maximum pressure by about 9%, an overall film thickness reduction of about 7%, and an overall temperature increase of about 2 K.


2021 ◽  
pp. 1-27
Author(s):  
Reza Taheri ◽  
P. Buyung Kosasih ◽  
Hongtao Zhu

Abstract Vegetable oil-in-water (VO/W) emulsions are common cold rolling lubricants. However, maintaining the required dispersion for polar oil droplets for consistent lubrication and proper surface self-cleaning after rolling remains a practical challenge. In this study, titanium silicate TiO2-SiO2 nanoparticle (NP) stabilised soybean oil emulsions are produced and NPs function as dispersant, lubrication enhancer, and detergent agent to clean up oil residue are explored. Cold rolling of SS316 reveals a threshold of NPs wt %, at which stably dispersed oil droplets improve tribology and lower the rolling parameters relative to that without or at high wt % of NPs. Cleaner as-rolled strips are also obtained with NPs. Favourable results are attributed to formation of NP-coating layers on oil droplets which enhances dispersion, optimises plate-out while keeping adequate wetting, and provides a 3-body abrasive rolling as opposed to 2-body adhesion without NPs. A model of sliding-rolling lubrication in cold rolling is also discussed.


2021 ◽  
pp. 1-23
Author(s):  
Abbas shafiee ◽  
Thomas Russell ◽  
Farshid Sadeghi ◽  
Matthew Wilmer

Abstract The objective of this investigation was to analytically investigate the performance of a spherical roller bearing operating under various loading and speed combinations. In order to achieve the objective, a full six degree of freedom spherical roller bearing dynamic model was developed. The model was corroborated with results in open literature. An adaptive slicing method was developed to optimize the accuracy and computational effort of the roller force, skew, and tilt calculations. A comprehensive roller-race contact analysis in terms of slip velocity and contact area was then carried out to identify how bearing load and inner race speed variations change slip velocity and skew at the roller-race contact. The results from this investigation demonstrate that roller skew increases with inner race speed, while the roller tilt remains relatively constant. The inner race speed and roller slip velocity correlate well, which causes the traction force to increase and therefore produce greater skew. Skew and tilt angles also increase with applied axial load. However, at a certain load the skew angle begins to decrease.


2021 ◽  
pp. 1-8
Author(s):  
Yan Chen ◽  
Xuezhen Wang ◽  
Zehua Han ◽  
Alexander Sinyukov ◽  
Abraham Clearfield ◽  
...  

Abstract The advancement of electric vehicles demands lubricants with multifunction and performance. In this research, we investigated amphiphilic a-ZrP nanoparticles as lubricant additives. Experimetns showed that the nanolubricant produced a tribofilm reduced the friction for 40% and wear 90%, while the electrical conductivity remained to be stable during tribotesting. Surface characterization of the tribofilm showed that there was a layered pyrophosphate on the wear track . The in situ impedance study about tribochemical kinetics revealed that the process in formation of a tribofilm involved synergetic growth and wear. During growth, the coefficient of friction increased with continued formation of such a file. During wear, the material removal rate was a function of friction, i.e., the higher the wear rate, the higher the friction coefficient. The competing mechanisms of film growth and wear resulted in an electrically uniformed surface.


2021 ◽  
pp. 1-1
Author(s):  
Scott Lattime ◽  
Robert Wheeler

Abstract Memoriam for Jack Braun


2021 ◽  
pp. 1-24
Author(s):  
Luanxia Chen ◽  
Zhanqiang Liu ◽  
Yukui Cai ◽  
Bing Wang

Abstract The cylinder block/valve plate interface in the axial piston pump has been proven to be easily worn out, which will increase power loss and reduce its efficiency. The valve plate surface is required to be manufactured with low viscous friction and wear. Multi-scale micro-texture has been proven to improve surface tribological properties. However, there are few types of research in the effect of surface topography on the tribological performance of multi-scale micro-textured surfaces. The purpose of this study is to explore how the multi-scale micro-texture on H62 brass affects its sliding friction behavior on 38CrMoAl. Based on micro-milling and wet micro-blasting, the multi-scale micro-textured surface was manufactured on H62 brass. The wet micro-blasting was applied in the H62 brass after the surface micro-texturing. The surface topography of multi-scale micro-textured samples processed by three abrasive grit sizes accompanied by two processing times was comprehensively measured in terms of height, feature, functional, and functional volume parameters. The tribological performance of multi-scale micro-textured H62 brass was characterized by disk-on-disk frictional experiments. Through analyzing the relationship between surface morphology and tribological properties, the anti-friction mechanism of the multi-scale micro-textured surface was analyzed from the perspective of 3D surface roughness parameters. The friction coefficient of the multi-scale micro-textured surface processed by the combination of micro-milling and wet micro-blasting decreased with the increasing grit size and micro-blasting time.


Sign in / Sign up

Export Citation Format

Share Document