scholarly journals Improved Algorithms for Polynomial-Time Decay and Time-Decay with Additive Error

Author(s):  
Tsvi Kopelowitz ◽  
Ely Porat
2007 ◽  
Vol 42 (3) ◽  
pp. 349-365 ◽  
Author(s):  
Tsvi Kopelowitz ◽  
Ely Porat

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 329
Author(s):  
Tomoyuki Morimae ◽  
Suguru Tamaki

It is known that several sub-universal quantum computing models, such as the IQP model, the Boson sampling model, the one-clean qubit model, and the random circuit model, cannot be classically simulated in polynomial time under certain conjectures in classical complexity theory. Recently, these results have been improved to ``fine-grained" versions where even exponential-time classical simulations are excluded assuming certain classical fine-grained complexity conjectures. All these fine-grained results are, however, about the hardness of strong simulations or multiplicative-error sampling. It was open whether any fine-grained quantum supremacy result can be shown for a more realistic setup, namely, additive-error sampling. In this paper, we show the additive-error fine-grained quantum supremacy (under certain complexity assumptions). As examples, we consider the IQP model, a mixture of the IQP model and log-depth Boolean circuits, and Clifford+T circuits. Similar results should hold for other sub-universal models.


2016 ◽  
Vol 16 (3&4) ◽  
pp. 251-270 ◽  
Author(s):  
Yasuhiro Takahashi ◽  
Seiichiro Tani ◽  
Takeshi Yamazaki ◽  
Kazuyuki Tanaka

We study the classical simulatability of commuting quantum circuits with n input qubits and O(log n) output qubits, where a quantum circuit is classically simulatable if its output probability distribution can be sampled up to an exponentially small additive error in classical polynomial time. Our main result is that there exists a commuting quantum circuit that is not classically simulatable unless the polynomial hierarchy collapses to the third level. This is the first formal evidence that a commuting quantum circuit is not classically simulatable even when the number of output qubits is O(log n). Then, we consider a generalized version of the circuit and clarify the condition under which it is classically simulatable. Lastly, using a proof similar to that of the main result, we provide an evidence that a slightly extended Clifford circuit is not classically simulatable.


2018 ◽  
Vol 60 (2) ◽  
pp. 360-375
Author(s):  
A. V. Vasil'ev ◽  
D. V. Churikov

10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Nakao Hayashi ◽  
Chunhua Li ◽  
Pavel I. Naumkin

We consider the initial value problem for the nonlinear dissipative Schrödinger equations with a gauge invariant nonlinearityλup-1uof orderpn<p≤1+2/nfor arbitrarily large initial data, where the lower boundpnis a positive root ofn+2p2-6p-n=0forn≥2andp1=1+2forn=1.Our purpose is to extend the previous results for higher space dimensions concerningL2-time decay and to improve the lower bound ofpunder the same dissipative condition onλ∈C:Im⁡ λ<0andIm⁡ λ>p-1/2pRe λas in the previous works.


Author(s):  
Yishay Mor ◽  
Claudia V. Goldman ◽  
Jeffrey S. Rosenschein
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document