Quantum
Latest Publications


TOTAL DOCUMENTS

619
(FIVE YEARS 506)

H-INDEX

23
(FIVE YEARS 15)

Published By Verein Zur Forderung Des Open Access Publizierens In Den Quantenwissenschaften

2521-327x

Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 621
Author(s):  
Giulia Rubino ◽  
Lee A. Rozema ◽  
Francesco Massa ◽  
Mateus Araújo ◽  
Magdalena Zych ◽  
...  

The study of causal relations has recently been applied to the quantum realm, leading to the discovery that not all physical processes have a definite causal structure. While indefinite causal processes have previously been experimentally shown, these proofs relied on the quantum description of the experiments. Yet, the same experimental data could also be compatible with definite causal structures within different descriptions. Here, we present the first demonstration of indefinite temporal order outside of quantum formalism. We show that our experimental outcomes are incompatible with a class of generalised probabilistic theories satisfying the assumptions of locality and definite temporal order. To this end, we derive physical constraints (in the form of a Bell-like inequality) on experimental outcomes within such a class of theories. We then experimentally invalidate these theories by violating the inequality using entangled temporal order. This provides experimental evidence that there exist correlations in nature which are incompatible with the assumptions of locality and definite temporal order.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 619
Author(s):  
Fei Shi ◽  
Mao-Sheng Li ◽  
Mengyao Hu ◽  
Lin Chen ◽  
Man-Hong Yung ◽  
...  

A set of multipartite orthogonal product states is locally irreducible, if it is not possible to eliminate one or more states from the set by orthogonality-preserving local measurements. An effective way to prove that a set is locally irreducible is to show that only trivial orthogonality-preserving local measurement can be performed to this set. In general, it is difficult to show that such an orthogonality-preserving local measurement must be trivial. In this work, we develop two basic techniques to deal with this problem. Using these techniques, we successfully show the existence of unextendible product bases (UPBs) that are locally irreducible in every bipartition in d⊗d⊗d for any d≥3, and 3⊗3⊗3 achieves the minimum dimension for the existence of such UPBs. These UPBs exhibit the phenomenon of strong quantum nonlocality without entanglement. Our result solves an open question given by Halder et al. [Phys. Rev. Lett. 122, 040403 (2019)] and Yuan et al. [Phys. Rev. A 102, 042228 (2020)]. It also sheds new light on the connections between UPBs and strong quantum nonlocality.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 620
Author(s):  
Armin Tavakoli ◽  
Emmanuel Zambrini Cruzeiro ◽  
Erik Woodhead ◽  
Stefano Pironio

We introduce new methods and tools to study and characterise classical and quantum correlations emerging from prepare-and-measure experiments with informationally restricted communication. We consider the most general kind of informationally restricted correlations, namely the ones formed when the sender is allowed to prepare statistical mixtures of mixed states, showing that contrary to what happens in Bell nonlocality, mixed states can outperform pure ones. We then leverage these tools to derive device-independent witnesses of the information content of quantum communication, witnesses for different quantum information resources, and demonstrate that these methods can be used to develop a new avenue for semi-device independent random number generators.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 618
Author(s):  
Davide Vodola ◽  
Manuel Rispler ◽  
Seyong Kim ◽  
Markus Müller

Mapping the decoding of quantum error correcting (QEC) codes to classical disordered statistical mechanics models allows one to determine critical error thresholds of QEC codes under phenomenological noise models. Here, we extend this mapping to admit realistic, multi-parameter noise models of faulty QEC circuits, derive the associated strongly correlated classical spin models, and illustrate this approach for a quantum repetition code with faulty stabilizer readout circuits. We use Monte-Carlo simulations to study the resulting phase diagram and benchmark our results against a minimum-weight perfect matching decoder. The presented method provides an avenue to assess fundamental thresholds of QEC circuits, independent of specific decoding strategies, and can thereby help guiding the development of near-term QEC hardware.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 617
Author(s):  
David Plankensteiner ◽  
Christoph Hotter ◽  
Helmut Ritsch

A full quantum mechanical treatment of open quantum systems via a Master equation is often limited by the size of the underlying Hilbert space. As an alternative, the dynamics can also be formulated in terms of systems of coupled differential equations for operators in the Heisenberg picture. This typically leads to an infinite hierarchy of equations for products of operators. A well-established approach to truncate this infinite set at the level of expectation values is to neglect quantum correlations of high order. This is systematically realized with a so-called cumulant expansion, which decomposes expectation values of operator products into products of a given lower order, leading to a closed set of equations. Here we present an open-source framework that fully automizes this approach: first, the equations of motion of operators up to a desired order are derived symbolically using predefined canonical commutation relations. Next, the resulting equations for the expectation values are expanded employing the cumulant expansion approach, where moments up to a chosen order specified by the user are included. Finally, a numerical solution can be directly obtained from the symbolic equations. After reviewing the theory we present the framework and showcase its usefulness in a few example problems.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 615 ◽  
Author(s):  
Marco Merkli

We develop a framework to analyze the dynamics of a finite-dimensional quantum system S in contact with a reservoir R. The full, interacting SR dynamics is unitary. The reservoir has a stationary state but otherwise dissipative dynamics. We identify a main part of the full dynamics, which approximates it for small values of the SR coupling constant, uniformly for all times t≥0. The main part consists of explicit oscillating and decaying parts. We show that the reduced system evolution is Markovian for all times. The technical novelty is a detailed analysis of the link between the dynamics and the spectral properties of the generator of the SR dynamics, based on Mourre theory. We allow for SR interactions with little regularity, meaning that the decay of the reservoir correlation function only needs to be polynomial in time, improving on the previously required exponential decay.In this work we distill the structural and technical ingredients causing the characteristic features of oscillation and decay of the SR dynamics. In the companion paper [27] we apply the formalism to the concrete case of an N-level system linearly coupled to a spatially infinitely extended thermal bath of non-interacting Bosons.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 613
Author(s):  
Ignatius William Primaatmaja ◽  
Cassey Crystania Liang ◽  
Gong Zhang ◽  
Jing Yan Haw ◽  
Chao Wang ◽  
...  

Most quantum key distribution (QKD) protocols can be classified as either a discrete-variable (DV) protocol or continuous-variable (CV) protocol, based on how classical information is being encoded. We propose a protocol that combines the best of both worlds – the simplicity of quantum state preparation in DV-QKD together with the cost-effective and high-bandwidth of homodyne detectors used in CV-QKD. Our proposed protocol has two highly practical features: (1) it does not require the honest parties to share the same reference phase (as required in CV-QKD) and (2) the selection of decoding basis can be performed after measurement. We also prove the security of the proposed protocol in the asymptotic limit under the assumption of collective attacks. Our simulation suggests that the protocol is suitable for secure and high-speed practical key distribution over metropolitan distances.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 614
Author(s):  
Honghao Fu

Let p be an odd prime and let r be the smallest generator of the multiplicative group Zp∗. We show that there exists a correlation of size Θ(r2) that self-tests a maximally entangled state of local dimension p−1. The construction of the correlation uses the embedding procedure proposed by Slofstra (Forum of Mathematics, Pi. (2019)). Since there are infinitely many prime numbers whose smallest multiplicative generator is in the set {2,3,5} (D.R. Heath-Brown The Quarterly Journal of Mathematics (1986) and M. Murty The Mathematical Intelligencer (1988)), our result implies that constant-sized correlations are sufficient for self-testing of maximally entangled states with unbounded local dimension.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 616
Author(s):  
Marco Merkli

A finite-dimensional quantum system is coupled to a bath of oscillators in thermal equilibrium at temperature T>0. We show that for fixed, small values of the coupling constant λ, the true reduced dynamics of the system is approximated by the completely positive, trace preserving Markovian semigroup generated by the Davies-Lindblad generator. The difference between the true and the Markovian dynamics is O(|λ|1/4) for all times, meaning that the solution of the Gorini-Kossakowski-Sudarshan-Lindblad master equation is approximating the true dynamics to accuracy O(|λ|1/4) for all times. Our method is based on a recently obtained expansion of the full system-bath propagator. It applies to reservoirs with correlation functions decaying in time as 1/t4 or faster, which is a significant improvement relative to the previously required exponential decay.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 612
Author(s):  
Tyler D. Ellison ◽  
Kohtaro Kato ◽  
Zi-Wen Liu ◽  
Timothy H. Hsieh

We introduce the concepts of a symmetry-protected sign problem and symmetry-protected magic to study the complexity of symmetry-protected topological (SPT) phases of matter. In particular, we say a state has a symmetry-protected sign problem or symmetry-protected magic, if finite-depth quantum circuits composed of symmetric gates are unable to transform the state into a non-negative real wave function or stabilizer state, respectively. We prove that states belonging to certain SPT phases have these properties, as a result of their anomalous symmetry action at a boundary. For example, we find that one-dimensional Z2×Z2 SPT states (e.g. cluster state) have a symmetry-protected sign problem, and two-dimensional Z2 SPT states (e.g. Levin-Gu state) have symmetry-protected magic. Furthermore, we comment on the relation between a symmetry-protected sign problem and the computational wire property of one-dimensional SPT states. In an appendix, we also introduce explicit decorated domain wall models of SPT phases, which may be of independent interest.


Sign in / Sign up

Export Citation Format

Share Document