Dynamic-Role Based Access Control Framework Across Multi-domains in Grid Environment

Author(s):  
Ying Chen ◽  
Shoubao Yang ◽  
Leitao Guo
2019 ◽  
pp. 698-711
Author(s):  
Kashif Munir ◽  
Lawan A. Mohammed

Access control is generally a rule or procedure that allows, denies, restricts or limit access to system's resources. It may, as well, monitor and record all attempts made to access a system. Access Control may also identify users attempting to access unauthorized resources. It is a mechanism which is very much important for protection in computer security. Various access control models are in use, including the most common Mandatory Access Control (MAC), Discretionary Access Control (DAC) and Role Based Access Control (RBAC). All these models are known as identity based access control models. In all these access control models, user (subjects) and resources (objects) are identified by unique names. Identification may be done directly or through roles assigned to the subjects. These access control methods are effective in unchangeable distributed system, where there are only a set of Users with a known set of services. For this reason, we propose a framework which is well suited to many situations in cloud computing where users or applications can be clearly separated according to their job functions. In this chapter, we proposes a role based access control framework with various features including security of sensitive data, authorization policy and secure data from hackers. Our proposed role based access control algorithm provides tailored and fine level of user access control services without adding complexity, and supports access privileges updates dynamically when a user's role is added or updated.


Author(s):  
Federica Paci ◽  
Elisa Bertino ◽  
Jason Crampton

Business processes –the next generation workflows- have attracted considerable research interest in the last fifteen years. More recently, several XML-based languages have been proposed for specifying and orchestrating business processes, resulting in the WS-BPEL language. Even if WS-BPEL has been developed to specify automated business processes that orchestrate activities of multiple Web services, there are many applications and situations requiring that people be considered as additional participants that can influence the execution of a process. Significant omissions from WS-BPEL are the specification of activities that require interactions with humans to be completed, called human activities, and the specification of authorization information associating users with human activities in a WS-BPEL business process and authorization constraints, such as separation of duty, on the execution of human activities. In this chapter, we address these deficiencies by introducing a new type of WS-BPEL activity to model human activities and by developing RBAC-WS-BPEL, a role based access control model for WS-BPEL and BPCL, a language to specify authorization constraints.


2014 ◽  
Vol 8 (10) ◽  
pp. 1904-1925 ◽  
Author(s):  
Yang Luo ◽  
Chunhe Xia ◽  
Liangshuang Lv ◽  
Zhao Wei ◽  
Yazhuo Li

Author(s):  
Kashif Munir ◽  
Lawan A. Mohammed

Access control is generally a rule or procedure that allows, denies, restricts or limit access to system's resources. It may, as well, monitor and record all attempts made to access a system. Access Control may also identify users attempting to access unauthorized resources. It is a mechanism which is very much important for protection in computer security. Various access control models are in use, including the most common Mandatory Access Control (MAC), Discretionary Access Control (DAC) and Role Based Access Control (RBAC). All these models are known as identity based access control models. In all these access control models, user (subjects) and resources (objects) are identified by unique names. Identification may be done directly or through roles assigned to the subjects. These access control methods are effective in unchangeable distributed system, where there are only a set of Users with a known set of services. For this reason, we propose a framework which is well suited to many situations in cloud computing where users or applications can be clearly separated according to their job functions. In this chapter, we proposes a role based access control framework with various features including security of sensitive data, authorization policy and secure data from hackers. Our proposed role based access control algorithm provides tailored and fine level of user access control services without adding complexity, and supports access privileges updates dynamically when a user's role is added or updated.


2013 ◽  
pp. 310-334
Author(s):  
Federica Paci ◽  
Elisa Bertino ◽  
Jason Crampton

Business processes –the next generation workflows- have attracted considerable research interest in the last fifteen years. More recently, several XML-based languages have been proposed for specifying and orchestrating business processes, resulting in the WS-BPEL language. Even if WS-BPEL has been developed to specify automated business processes that orchestrate activities of multiple Web services, there are many applications and situations requiring that people be considered as additional participants that can influence the execution of a process. Significant omissions from WS-BPEL are the specification of activities that require interactions with humans to be completed, called human activities, and the specification of authorization information associating users with human activities in a WS-BPEL business process and authorization constraints, such as separation of duty, on the execution of human activities. In this chapter, we address these deficiencies by introducing a new type of WS-BPEL activity to model human activities and by developing RBAC-WS-BPEL, a role based access control model for WS-BPEL and BPCL, a language to specify authorization constraints.


Sign in / Sign up

Export Citation Format

Share Document