scholarly journals Verification of Multi-agent Systems Via Bounded Model Checking

Author(s):  
Xiangyu Luo ◽  
Kaile Su ◽  
Abdul Sattar ◽  
Mark Reynolds
2020 ◽  
Vol 175 (1-4) ◽  
pp. 207-251
Author(s):  
Wojciech Jamroga ◽  
Beata Konikowska ◽  
Damian Kurpiewski ◽  
Wojciech Penczek

Some multi-agent scenarios call for the possibility of evaluating specifications in a richer domain of truth values. Examples include runtime monitoring of a temporal property over a growing prefix of an infinite path, inconsistency analysis in distributed databases, and verification methods that use incomplete anytime algorithms, such as bounded model checking. In this paper, we present multi-valued alternating-time temporal logic ( mv-ATL → ∗ ), an expressive logic to specify strategic abilities in multi-agent systems. It is well known that, for branchingtime logics, a general method for model-independent translation from multi-valued to two-valued model checking exists. We show that the method cannot be directly extended to mv-ATL → ∗ . We also propose two ways of overcoming the problem. Firstly, we identify constraints on formulas for which the model-independent translation can be suitably adapted. Secondly, we present a model-dependent reduction that can be applied to all formulas of mv-ATL → ∗ . We show that, in all cases, the complexity of verification increases only linearly when new truth values are added to the evaluation domain. We also consider several examples that show possible applications of mv-ATL → ∗ and motivate its use for model checking multi-agent systems.


Author(s):  
Wojciech Jamroga ◽  
Beata Konikowska ◽  
Damian Kurpiewski ◽  
Wojciech Penczek

Some multi-agent scenarios call for the possibility of evaluating specifications in a richer domain of truth values. Examples include runtime monitoring of a temporal property over a growing prefix of an infinite path, inconsistency analysis in distributed databases, and verification methods that use incomplete anytime algorithms, such as bounded model checking. In this paper, we present multi-valued alternating-time temporal logic (mv-ATL*→), an expressive logic to specify strategic abilities in multi-agent systems. It is well known that, for branching-time logics, a general method for model-independent translation from multi-valued to two-valued model checking exists. We show that the method cannot be directly extended to mv-ATL*→. We also propose two ways of overcoming the problem. Firstly, we identify constraints on formulas for which the model-independent translation can be suitably adapted. Secondly, we present a model-dependent reduction that can be applied to all formulas of mv-ATL*→. We show that, in all cases, the complexity of verification increases only linearly when new truth values are added to the evaluation domain. We also consider several examples that show possible applications of mv-ATL*→ and motivate its use for model checking multi-agent systems.


2014 ◽  
Vol 23 (11) ◽  
pp. 2835-2861
Author(s):  
Cong-Hua ZHOU ◽  
Meng YE ◽  
Chang-Da WANG ◽  
Zhi-Feng LIU

2021 ◽  
Vol 35 (2) ◽  
Author(s):  
Yehia Abd Alrahman ◽  
Nir Piterman

AbstractWe propose a formalism to model and reason about reconfigurable multi-agent systems. In our formalism, agents interact and communicate in different modes so that they can pursue joint tasks; agents may dynamically synchronize, exchange data, adapt their behaviour, and reconfigure their communication interfaces. Inspired by existing multi-robot systems, we represent a system as a set of agents (each with local state), executing independently and only influence each other by means of message exchange. Agents are able to sense their local states and partially their surroundings. We extend ltl to be able to reason explicitly about the intentions of agents in the interaction and their communication protocols. We also study the complexity of satisfiability and model-checking of this extension.


Sign in / Sign up

Export Citation Format

Share Document